NIH Extramural Nexus News
Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity.
Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity.
BMC Genomics. 2017 Feb 28;18(1):215
Authors: Chambers M, Turki-Judeh W, Kim MW, Chen K, Gallaher SD, Courey AJ
Abstract
BACKGROUND: The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting.
RESULTS: Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II.
CONCLUSIONS: Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression.
PMID: 28245789 [PubMed - in process]
Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
Methods Mol Biol. 2017;1552:123-133
Authors: Bian J, Zhou X
Abstract
The rapid development of next generation sequencing (NGS) technology provides a novel avenue for genomic exploration and research. Hidden Markov models (HMMs) have wide applications in pattern recognition as well as Bioinformatics such as transcription factor binding sites and cis-regulatory modules detection. An application of HMM is introduced in this chapter with the in-deep developing of NGS. Single nucleotide variants (SNVs) inferred from NGS are expected to reveal gene mutations in cancer. However, NGS has lower sequence coverage and poor SNV detection capability in the regulatory regions of the genome. A specific HMM is developed for this purpose to infer the genotype for each position on the genome by incorporating the mapping quality of each read and the corresponding base quality on the reads into the emission probability of HMM. The procedure and the implementation of the algorithm is presented in detail for understanding and programming.
PMID: 28224495 [PubMed - in process]
Transcriptional and post-transcriptional regulation of histone variant H2A.Z during sea urchin development.
Transcriptional and post-transcriptional regulation of histone variant H2A.Z during sea urchin development.
Dev Growth Differ. 2016 Dec;58(9):727-740
Authors: Hajdu M, Calle J, Puno A, Haruna A, Arenas-Mena C
Abstract
Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3' UTR sequences stabilize GFP mRNAs relative to those with SV40 3' UTR sequences, although the 3' UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We elaborated an H2A.Z::GFP BAC reporter that reproduces embryonic H2A.Z expression. Genome-wide chromatin accessibility analysis using ATAC-seq revealed a cis-regulatory module (CRM) that, when deleted, causes a significant decline of the H2A.Z reporter expression. In addition, the mutation of a Sox transcription factor binding site motif and, more strongly, of a Myb motif cause significant decline of reporter gene expression. Our results suggest that an undetermined Myb-family transcription factor controls the transcriptional regulation of H2A.Z.
PMID: 27896813 [PubMed - indexed for MEDLINE]
Single embryo-resolution quantitative analysis of reporters permits multiplex spatial cis-regulatory analysis.
Single embryo-resolution quantitative analysis of reporters permits multiplex spatial cis-regulatory analysis.
Dev Biol. 2017 Jan 15;:
Authors: Guay CL, McQuade ST, Nam J
Abstract
Cis-regulatory modules (CRMs) control spatiotemporal gene expression patterns in embryos. While measurement of quantitative CRM activities has become efficient, measurement of spatial CRM activities still relies on slow, one-by-one methods. To overcome this bottleneck, we have developed a high-throughput method that can simultaneously measure quantitative and spatial CRM activities. The new method builds profiles of quantitative CRM activities measured at single-embryo resolution in many mosaic embryos and uses these profiles as a 'fingerprint' of spatial patterns. We show in sea urchin embryos that the new method, Multiplex and Mosaic Observation of Spatial Information encoded in Cis-regulatory modules (MMOSAIC), can efficiently predict spatial activities of new CRMs and can detect spatial responses of CRMs to gene perturbations. We anticipate that MMOSAIC will facilitate systems-wide functional analyses of CRMs in embryos.
PMID: 28099870 [PubMed - as supplied by publisher]
Chromatin Dynamics Regulate Mesenchymal Stem Cell Lineage Specification and Differentiation to Osteogenesis.
Chromatin Dynamics Regulate Mesenchymal Stem Cell Lineage Specification and Differentiation to Osteogenesis.
Biochim Biophys Acta. 2017 Jan 08;:
Authors: Wu H, Gordon JA, Whitfield TW, Tai PW, van Wijnen AJ, Stein JL, Stein GS, Lian JB
Abstract
Multipotent mesenchymal stromal cells (MSCs) are critical for regeneration of multiple tissues. Epigenetic mechanisms are fundamental regulators of lineage specification and cell fate, and as such, we addressed the question of which epigenetic modifications characterize the transition of nascent MSCs to a tissue specific MSC-derived phenotype. By profiling the temporal changes of seven histone marks correlated to gene expression during proliferation, early commitment, matrix deposition, and mineralization stages, we identified distinct epigenetic mechanisms that regulate transcriptional programs necessary for tissue-specific phenotype development. Patterns of stage-specific enrichment of histone modifications revealed distinct modes of repression and activation of gene expression that would not be detected using single endpoint analysis. We discovered that at commitment, H3K27me3 is removed from genes that are upregulated and is not acquired on downregulated genes. Additionally, we found that the absence of H3K4me3 modification at promoters defined a subset of osteoblast-specific upregulated genes, indicating acquisition of acetyl modifications drive activation of these genes. Significantly, loss or gain of H3K36me3 was the primary predictor of dynamic changes in temporal gene expression. Using unsupervised pattern discovery analysis the signature of osteogenic-related histone modifications identified novel functional cis regulatory modules associated with enhancer regions that control tissue-specific genes. Our work provides a cornerstone to understand the epigenetic regulation of transcriptional programs that are important for MSC lineage commitment and lineage, as well as insights to facilitate MSC-based therapeutic interventions.
PMID: 28077316 [PubMed - as supplied by publisher]
Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13.
Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13.
Cell Rep. 2016 Dec 13;17(11):2913-2926
Authors: Sheth R, Barozzi I, Langlais D, Osterwalder M, Nemec S, Carlson HL, Stadler HS, Visel A, Drouin J, Kmita M
Abstract
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13(-/-); Hoxd13(-/-) limbs. Our results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.
PMID: 27974206 [PubMed - in process]
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.
ACS Synth Biol. 2016 Dec 14;
Authors: Portela RM, Vogl T, Kniely C, Fischer JE, Oliveira R, Glieder A
Abstract
Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.
PMID: 27973777 [PubMed - as supplied by publisher]
On the comparison of regulatory sequences with multiple resolution Entropic Profiles.
On the comparison of regulatory sequences with multiple resolution Entropic Profiles.
BMC Bioinformatics. 2016 Mar 18;17:130
Authors: Comin M, Antonello M
Abstract
BACKGROUND: Enhancers are stretches of DNA (100-1000 bp) that play a major role in development gene expression, evolution and disease. It has been recently shown that in high-level eukaryotes enhancers rarely work alone, instead they collaborate by forming clusters of cis-regulatory modules (CRMs). Although the binding of transcription factors is sequence-specific, the identification of functionally similar enhancers is very difficult and it cannot be carried out with traditional alignment-based techniques.
RESULTS: The use of fast similarity measures, like alignment-free measures, to detect related regulatory sequences is crucial to understand functional correlation between two enhancers. In this paper we study the use of alignment-free measures for the classification of CRMs. However, alignment-free measures are generally tied to a fixed resolution k. Here we propose an alignment-free statistic, called [Formula: see text], that is based on multiple resolution patterns derived from the Entropic Profiles (EPs). The Entropic Profile is a function of the genomic location that captures the importance of that region with respect to the whole genome. As a byproduct we provide a formula to compute the exact variance of variable length word counts, a result that can be of general interest also in other applications.
CONCLUSIONS: We evaluate several alignment-free statistics on simulated data and real mouse ChIP-seq sequences. The new statistic, [Formula: see text], is highly successful in discriminating functionally related enhancers and, in almost all experiments, it outperforms fixed-resolution methods. We implemented the new alignment-free measures, as well as traditional ones, in a software called EP-sim that is freely available: http://www.dei.unipd.it/~ciompin/main/EP-sim.html .
PMID: 26987840 [PubMed - indexed for MEDLINE]
Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology.
Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology.
Curr Top Dev Biol. 2016;117:237-51
Authors: Peter IS, Davidson EH
Abstract
The insight that the genomic control of developmental process is encoded in the form of gene regulatory networks has profound impacts on many areas of modern bioscience. Most importantly, it affects developmental biology itself, as it means that a causal understanding of development requires knowledge of the architecture of regulatory network interactions. Furthermore, it follows that functional changes in developmental gene regulatory networks have to be considered as a primary mechanism for evolutionary process. We here discuss some of the recent advances in gene regulatory network biology and how they have affected our current understanding of development, evolution, and regulatory genomics.
PMID: 26969981 [PubMed - indexed for MEDLINE]
Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter.
Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter.
Plant Biotechnol J. 2016 Jan;14(1):61-71
Authors: Lehmeyer M, Kanofsky K, Hanko EK, Ahrendt S, Wehrs M, Machens F, Hehl R
Abstract
Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA.
PMID: 25819608 [PubMed - indexed for MEDLINE]