Systems Biology

The logic of monsters: development and morphological diversity in stem-cell-based embryo models

Mon, 2024-10-28 06:00

Interface Focus. 2024 Oct 25;14(5):20240023. doi: 10.1098/rsfs.2024.0023. eCollection 2024 Oct 11.

ABSTRACT

Organoids and stem-cell-based embryo models (SEMs) are imperfect organ or embryo representations that explore a much larger space of possible forms, or morphospace, compared to their in vivo counterparts. Here, we discuss SEM biology in light of seminal work by Pere Alberch, a leading figure in early evo-devo, interpreting SEMs as developmental 'monstrosities' in the Alberchian sense. Alberch suggested that ordered patterns in aberrant development-i.e. 'the logic of monsters'-reveal developmental constraints on possible morphologies. In the same vein, we detail how SEMs have begun to shed light on structural features of normal development, such as developmental variability, the relative importance of internal versus external constraints, boundary conditions and design principles governing robustness and canalization. We argue that SEMs represent a powerful experimental tool to explore and expand developmental morphospace and propose that the 'monstrosity' of SEMs can be leveraged to uncover the 'hidden' rules and developmental constraints that robustly shape and pattern the embryo.

PMID:39464644 | PMC:PMC11503023 | DOI:10.1098/rsfs.2024.0023

Categories: Literature Watch

Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states

Mon, 2024-10-28 06:00

Nat Catal. 2024;7(10):1086-1098. doi: 10.1038/s41929-024-01220-6. Epub 2024 Aug 30.

ABSTRACT

Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.

PMID:39463726 | PMC:PMC11499278 | DOI:10.1038/s41929-024-01220-6

Categories: Literature Watch

Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice

Mon, 2024-10-28 06:00

FASEB J. 2024 Oct 31;38(20):e70087. doi: 10.1096/fj.202401397R.

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.

PMID:39463193 | DOI:10.1096/fj.202401397R

Categories: Literature Watch

Understanding metabolic plasticity at single cell resolution

Mon, 2024-10-28 06:00

Essays Biochem. 2024 Oct 28:EBC20240002. doi: 10.1042/EBC20240002. Online ahead of print.

ABSTRACT

It is increasingly clear that cellular metabolic function varies not just between cells of different tissues, but also within tissues and cell types. In this essay, we envision how differences in central carbon metabolism arise from multiple sources, including the cell cycle, circadian rhythms, intrinsic metabolic cycles, and others. We also discuss and compare methods that enable such variation to be detected, including single-cell metabolomics and RNA-sequencing. We pay particular attention to biosensors for AMPK and central carbon metabolites, which when used in combination with metabolic perturbations, provide clear evidence of cellular variance in metabolic function.

PMID:39462995 | DOI:10.1042/EBC20240002

Categories: Literature Watch

Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality

Mon, 2024-10-28 06:00

Biotechnol Bioeng. 2024 Oct 27. doi: 10.1002/bit.28873. Online ahead of print.

ABSTRACT

Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.

PMID:39462977 | DOI:10.1002/bit.28873

Categories: Literature Watch

Paratransgenic quantum vaccinology

Sun, 2024-10-27 06:00

Trends Parasitol. 2024 Oct 26:S1471-4922(24)00295-2. doi: 10.1016/j.pt.2024.10.006. Online ahead of print.

ABSTRACT

Tick vaccines are an environmentally friendly intervention for the prevention and control of tick-borne diseases affecting humans and animals worldwide. From our perspective, the challenges in tick vaccinology have encouraged the implementation of new interventions. In this opinion article we propose paratransgenic quantum vaccinology as a new approach that integrates platform trends in biotechnology, such as omics datasets combined with big data analytics, machine learning, and paratransgenesis with a systems biology perspective. This innovative approach allows the identification of protective epitopes in tick- and/or pathogen-derived proteins for the design of chimeric vaccine candidate antigens which can be produced by commensal/symbiotic microorganisms eliciting a protective response in the host.

PMID:39462754 | DOI:10.1016/j.pt.2024.10.006

Categories: Literature Watch

Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state

Sun, 2024-10-27 06:00

BMC Vet Res. 2024 Oct 26;20(1):488. doi: 10.1186/s12917-024-04331-1.

ABSTRACT

BACKGROUND: Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas.

METHODS: Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out.

RESULTS: WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs.

CONCLUSIONS: EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.

PMID:39462388 | DOI:10.1186/s12917-024-04331-1

Categories: Literature Watch

<em>Candida tropicalis</em>-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function

Sun, 2024-10-27 06:00

Gut Microbes. 2024 Jan-Dec;16(1):2416922. doi: 10.1080/19490976.2024.2416922. Epub 2024 Oct 27.

ABSTRACT

Candida tropicalis-a prevalent gut commensal fungus in healthy individuals - contributes to intestinal health and disease. However, how commensal C. tropicalis influences intestinal homeostasis and barrier function is poorly understood. Here, we demonstrated that the reference strain of C. tropicalis (MYA-3404) ameliorated intestinal inflammation in murine models of chemically induced colitis and bacterial infection. Intestinal colonization of C. tropicalis robustly upregulated the expression of IL-17A and IL-22 to increase barrier function and promote proliferation of intestinal epithelial cells in the mouse colon. Metabolomics analysis of fecal samples from mice colonized with C. tropicalis revealed alterations in vitamin B3 metabolism, promoting conversion of nicotinamide to nicotinic acid. Although nicotinamide worsened colitis, treatment with nicotinic acid alleviated disease symptoms and enhanced epithelial proliferation and Th17 cell differentiation. Oral gavage of C. tropicalis mitigated nicotinamide-induced intestinal dysfunction in experimental colitis. Blockade of nicotinic acid production with nicotinamidase inhibitors lowered the protective effects against colitis in mice treated with C. tropicalis. Notably, a clinical C. tropicalis strain isolated from patients with candidemia lacked the protective effects against murine colitis observed with the reference strain. Together, our results highlight a novel role for C. tropicalis in resolving intestinal inflammation through the modulation of vitamin B3 metabolism.

PMID:39462273 | DOI:10.1080/19490976.2024.2416922

Categories: Literature Watch

Optogenetic dissection of transcriptional repression in a multicellular organism

Sun, 2024-10-27 06:00

Nat Commun. 2024 Oct 26;15(1):9263. doi: 10.1038/s41467-024-53539-0.

ABSTRACT

Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.

PMID:39461978 | DOI:10.1038/s41467-024-53539-0

Categories: Literature Watch

Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn's disease

Sat, 2024-10-26 06:00

Cell Host Microbe. 2024 Oct 18:S1931-3128(24)00359-7. doi: 10.1016/j.chom.2024.10.001. Online ahead of print.

ABSTRACT

Exclusive enteral nutrition (EEN) is a first-line therapy for pediatric Crohn's disease (CD), but protective mechanisms remain unknown. We established a prospective pediatric cohort to characterize the function of fecal microbiota and metabolite changes of treatment-naive CD patients in response to EEN (German Clinical Trials DRKS00013306). Integrated multi-omics analysis identified network clusters from individually variable microbiome profiles, with Lachnospiraceae and medium-chain fatty acids as protective features. Bioorthogonal non-canonical amino acid tagging selectively identified bacterial species in response to medium-chain fatty acids. Metagenomic analysis identified high strain-level dynamics in response to EEN. Functional changes in diet-exposed fecal microbiota were further validated using gut chemostat cultures and microbiota transfer into germ-free Il10-deficient mice. Dietary model conditions induced individual patient-specific strain signatures to prevent or cause inflammatory bowel disease (IBD)-like inflammation in gnotobiotic mice. Hence, we provide evidence that EEN therapy operates through explicit functional changes of temporally and individually variable microbiome profiles.

PMID:39461337 | DOI:10.1016/j.chom.2024.10.001

Categories: Literature Watch

Splicing by Overlap Extension PCR for the Production of Fusion Proteins

Sat, 2024-10-26 06:00

Methods Mol Biol. 2025;2853:17-31. doi: 10.1007/978-1-0716-4104-0_3.

ABSTRACT

Fusion proteins are valuable molecules to meet different demands related to the development of biopharmaceuticals and bioprocesses. In human therapy, they are used to improve the half-life of biologics by modifying the biophysical properties of the proteins. In biotechnology, the design of fusion proteins can standardize the establishment of production clones and the purification process. Analytical detection capabilities of the fusion partner and binding to affinity ligands play a crucial role. For the generation of the recombinant cell line, the maturation of the protein and the secretion are also crucial factors, which can be significantly influenced by the fusion partner and can determine the final yield of the bioprocess. Here we present a protocol to recombine the human extracellular domain of CD19 with the human serum albumin domain 2 resulting in a fusion protein CD19-AD2 including a flexible linker sequence in the interface between the C-terminus of CD19 and the N-terminus of HSA-D2 and a terminal His12-tag. The two fragments are independently amplified with primers allowing to genetically connect the two fragments in the next step by overlap extension PCR. By this strategy, the linker sequence as well as the albumin fragment can be chosen individually to be flexible in the fine-tuning of the final protein. The amplified product is then cloned into a mammalian expression vector suitable to generate a recombinant transient or stable cell culture. This workflow can be applied to any protein sequence by adapting the specific primer sequences.

PMID:39460912 | DOI:10.1007/978-1-0716-4104-0_3

Categories: Literature Watch

Post-senescence reproductive rebound in Daphnia associated with reversal of age-related transcriptional changes

Sat, 2024-10-26 06:00

Geroscience. 2024 Oct 26. doi: 10.1007/s11357-024-01401-y. Online ahead of print.

ABSTRACT

A long-lived species of zooplankton microcrustaceans, Daphnia magna, sometimes exhibits late-life rebound of reproduction, briefly reversing reproductive senescence. Such events are often interpreted as terminal investments in anticipation of imminent mortality. We demonstrate that such post-senescence reproductive events (PSREs) neither cause nor anticipate increased mortality. We analyze an RNAseq experiment comparing young, old reproductively senescent, and old PSRE Daphnia females. We first show that overall age-related transcriptional changes are dominated by the increased transcription of guanidine monophosphate synthases and guanylate cyclases, as well as two groups of presumed transposon-encoded proteins, and by a drop in transcription of protein synthesis-related genes. We then focus on gene families and functional groups in which full or partial reversal of age-related transcriptional changes occur. This analysis reveals a reversal, in the PSRE individuals, of age-related up-regulation of apolipoproteins D, lysosomal lipases, and peptidases as well as several proteins related to mitochondrial and muscle functions. While it is not certain which of these changes enable reproductive rejuvenation, and which are by-products of processes that lead to it, we present some evidence that post-senescence reproductive events are associated with the reversal of age-related protein and lipid aggregates removal and apoptosis.

PMID:39460850 | DOI:10.1007/s11357-024-01401-y

Categories: Literature Watch

Selective regulation of aspartyl intramembrane protease activity by calnexin

Sat, 2024-10-26 06:00

Cell Mol Life Sci. 2024 Oct 26;81(1):441. doi: 10.1007/s00018-024-05478-8.

ABSTRACT

Signal peptide peptidase-like 2c (SPPL2c) is a testis-specific aspartyl intramembrane protease that contributes to male gamete function both by catalytic and non-proteolytic mechanisms. Here, we provide an unbiased characterisation of the in vivo interactome of SPPL2c identifying the ER chaperone calnexin as novel binding partner of this enzyme. Recruitment of calnexin specifically required the N-glycosylation within the N-terminal protease-associated domain of SPPL2c. Importantly, mutation of the single glycosylation site of SPPL2c or loss of calnexin expression completely prevented SPPL2c-mediated intramembrane proteolysis of all tested substrates. By contrast and despite rather promiscuous binding of calnexin to other SPP/SPPL proteases, expression of the chaperone was exclusively required for SPPL2c-mediated proteolysis. Despite some impact on the stability of SPPL2c most presumably due to assistance in folding of the luminal domain of the protease, calnexin appeared to be recruited rather constitutively to the protease thereby boosting its catalytic activity. In summary, we describe a novel, highly specific mode of intramembrane protease regulation, highlighting the need to systematically approach control mechanisms governing the proteolytic activity of other members of the aspartyl intramembrane protease family.

PMID:39460794 | DOI:10.1007/s00018-024-05478-8

Categories: Literature Watch

Comparative proteomic analysis of male and female androgenetic alopecia: elucidating gender-specific molecular patterns

Sat, 2024-10-26 06:00

Arch Dermatol Res. 2024 Oct 26;316(10):721. doi: 10.1007/s00403-024-03453-8.

ABSTRACT

This study presents a comprehensive comparative proteomic analysis aimed at elucidating the molecular mechanisms underlying male androgenetic alopecia (AGA) and female AGA. Scalp samples from both male AGA and female AGA patients, along with their respective normal controls, were subjected to proteomic analysis, followed by bioinformatics investigations. Our findings revealed distinct proteomic profiles between male AGA and female AGA, with a total of 68 differentially expressed proteins identified in male AGA and 84 in female AGA. Among these, specific proteins were altered in male AGA and female AGA, highlighting the sex-specific molecular pathways involved in the pathogenesis of pattern hair loss. Protein-protein interaction network analyses further delineated the most impacted biological processes, including cytoskeleton organization, stress response, and metabolic pathways, with particular emphasis on the differing altered stress responses and metabolic states associated with hair loss between sexes. Our study not only uncovered the complex molecular landscape of male AGA and female AGA but also identified potential biomarkers and therapeutic targets, offering new insights into the sex-specific pathogenesis of pattern hair loss.

PMID:39460779 | DOI:10.1007/s00403-024-03453-8

Categories: Literature Watch

Deep learning revealed the distribution and evolution patterns for invertible promoters across bacterial lineages

Sat, 2024-10-26 06:00

Nucleic Acids Res. 2024 Oct 26:gkae966. doi: 10.1093/nar/gkae966. Online ahead of print.

ABSTRACT

Invertible promoters (invertons) are crucial regulatory elements in bacteria, facilitating gene expression changes under stress. Despite their importance, their prevalence and the range of regulated gene functions are largely unknown. We introduced DeepInverton, a deep learning model that identifies invertons across a broad phylogenetic spectrum without using sequencing reads. By analyzing 68 733 bacterial genomes and 9382 metagenomes, we have uncovered over 200 000 nonredundant invertons and have also highlighted their abundance in pathogens. Additionally, we identified a post-Cambrian Explosion increase of invertons, paralleling species diversification. Furthermore, we revealed that invertons regulate diverse functions, including antimicrobial resistance and biofilm formation, underscoring their role in environmental adaptation. Notably, the majority of inverton identifications by DeepInverton have been confirmed by the in vitro experiments. The comprehensive inverton profiles have deepened our understanding of invertons at pan-genome and pan-metagenome scales, enabling a broad spectrum of applications in microbial ecology and synthetic biology.

PMID:39460615 | DOI:10.1093/nar/gkae966

Categories: Literature Watch

Comparative Analysis of the Neutralizing Capacity of Monovalent and Bivalent Formulations of Betuvax-CoV-2, a Subunit Recombinant COVID-19 Vaccine, Against Various Strains of SARS-CoV-2

Sat, 2024-10-26 06:00

Vaccines (Basel). 2024 Oct 21;12(10):1200. doi: 10.3390/vaccines12101200.

ABSTRACT

SARS-CoV-2, the causal agent of the COVID-19 pandemic, is characterized by rapid evolution, which poses a significant public health challenge. Effective vaccines that provide robust protection, elicit strong immune responses, exhibit favorable safety profiles, and enable cost-effective large-scale production are crucial. The RBD-Fc-based Betuvax-CoV-2 vaccine has previously demonstrated a favorable safety profile and induced a significant anti-SARS-CoV-2 humoral immune response in clinical trials. Due to the rapid evolution and emergence of new SARS-CoV-2 strains, the relevance of bivalent vaccine formulations has increased.

METHODS: This study compared the neutralizing capacity of monovalent and bivalent vaccine formulations against different SARS-CoV-2 strains detected with a SARS-CoV-2 microneutralization assay (MNT).

FINDINGS: The monovalent Wuhan-based vaccine generated neutralizing antibodies against the Wuhan and Omicron BA.2 variants but not the distinct Omicron BQ.1 strain. Conversely, the monovalent BA.2-based vaccine induced neutralizing antibodies against both Omicron strains but not Wuhan. While the bivalent Wuhan and BA.2-based vaccine was effective against strains containing the same antigens, it was insufficient to neutralize the distinctive BQ.1 strain at a small dosage.

INTERPRETATION: These findings suggest that the vaccine composition should closely match the circulating SARS-CoV-2 strain to elicit the optimal neutralizing antibody response and include the appropriate dosage. Moreover, this study did not find additional advantages of using the bivalent form over the monovalent form for the vaccination against a single prevailing SARS-CoV-2 strain.

PMID:39460365 | DOI:10.3390/vaccines12101200

Categories: Literature Watch

A Population-Based Study of SARS-CoV-2 IgG Antibody Responses to Vaccination in Manitoba

Sat, 2024-10-26 06:00

Vaccines (Basel). 2024 Sep 26;12(10):1095. doi: 10.3390/vaccines12101095.

ABSTRACT

Understanding variables that influence antibody responses to COVID-19 vaccination within a population can provide valuable information on future vaccination strategies. In this population-based study, we examined the antibody responses to COVID-19 vaccination in Manitoba using residual serum specimens collected between January 2021 and March 2022 (n = 20,365). Samples were tested for spike and nucleocapsid IgG against SARS-CoV-2 using clinically validated assays. We assessed the impacts of multiple factors on post-vaccination antibody titres including type of vaccine, age, sex, geographic location, number of doses received, and timing of vaccination. Our investigation demonstrated that vaccination with one dose of Moderna mRNA-1273 elicited higher anti-spike IgG titres overall compared to Pfizer BNT162b2 vaccination, while one dose of Pfizer BNT162b2 followed by a second dose of Moderna mRNA-1273 exhibited higher titres than two doses of Pfizer BNT162b2 or Moderna mRNA-1273, irrespective of age. Age and time post-vaccination had considerable effects on antibody responses, with older age groups exhibiting lower anti-spike IgG titres than younger ages, and titres of those vaccinated with Pfizer BNT162b2 waning faster than those vaccinated with Moderna mRNA-1273 or a combination of Pfizer BNT162b2 and Moderna mRNA-1273. Antibody titres did not appear to be affected by sex or geographic location. Our results identify how factors such as age and type of vaccine can influence antibody responses to vaccination, and how antibody titres wane over time. This information highlights the importance of tailoring vaccine regimens to specific populations, especially those at increased risk of severe COVID-19 and can be used to inform future vaccination strategies, scheduling of booster doses, and public health measures.

PMID:39460263 | DOI:10.3390/vaccines12101095

Categories: Literature Watch

Selection Pressure Profile Suggests Species Criteria among Tick-Borne Orthoflaviviruses

Sat, 2024-10-26 06:00

Viruses. 2024 Sep 30;16(10):1554. doi: 10.3390/v16101554.

ABSTRACT

Orthoflaviviruses are arthropod-borne viruses that are transmitted by mosquitoes or ticks and cause a range of significant human diseases. Among the most important tick-borne orthoflaviviruses (TBFVs) is tick-borne encephalitis virus (TBEV), which is endemic in Eurasia, and Powassan virus, which is endemic in Asia and North America. There is a significant controversy regarding species assignment in the tick-borne encephalitis virus complex due to the complex phylogenetic, serological, ecological, and pathogenetic properties of viruses. Comparing the rate of non-synonymous to synonymous substitutions (dN/dS) over the course of tick-borne orthoflavivirus diversification suggests that there is a very strong stabilizing selection (Nei-Gojobori dN/dS < 0.1) among tick-borne orthoflaviviruses that differ by less than 13.5% amino acid/21.4% nucleotide sequences, and discretely more rapid accumulation of non-synonymous substitutions (dN/dS > 0.13) among more divergent viruses that belong to distinct species. This pattern was similarly observed in genome regions encoding structural (E) and non-structural (NS3) proteins. Below this distance threshold, viruses appear fit and strongly tied to their ecological niche, whereas above the threshold, a greater degree of adaptation appears necessary. This species criterion suggests that all subtypes of TBEV, all related ovine/caprine encephalomyelitis viruses, and Omsk hemorrhagic fever virus (OHFV) together correspond to a single species. Within this species, viruses make up 11 subtypes that are reliably segregated by a 10% nucleotide distance cut-off suggested earlier for TBEV. The same 10% subtype cut-off suggests that Powassan virus includes two subtypes, Powassan and Deer Tick virus.

PMID:39459887 | DOI:10.3390/v16101554

Categories: Literature Watch

Determining the Identity Nucleotides and the Energy of Binding of tRNAs to Their Aminoacyl-tRNA Synthetases Using a Simple Logistic Model

Sat, 2024-10-26 06:00

Life (Basel). 2024 Oct 18;14(10):1328. doi: 10.3390/life14101328.

ABSTRACT

This study showed that the predictor in logistic regression can be applied to estimating the Gibbs free energy of tRNAs' recognition of and binding to their aminoacyl-tRNA synthetases. Then, 24 linear logistic regression models predicting different classes of tRNAs loaded with a corresponding amino acid were trained in a machine learning classification method, reducing the misclassification error to zero. The models were based on minimal subsets of Boolean explanatory variables describing the favorite presence of nucleotides or nucleosides localized in the different parts of the tRNA. In 90% of cases, they agree with the components of the consensus strand in a class of tRNAs loaded by a given amino acid. According to the proposed theoretical model, the values of the free energy for the entry of the recognition state in the process of tRNA charging were obtained, and the inputs from identity nucleotides and the tRNA strand backbone were distinguished. Almost all the resulting models indicated leading anticodon tandems defining the first and second positions of the anticodon (positions 35 and 36 of the tRNA strand) and the small sets (up to six positions) of the other nucleotides as the natural identity nucleotides most influential in the free energy balance. The magnitude of their input to this energy depends on the position in the strand, favoring positions -1, 35, and 36. The role of position 34 is relatively smaller. These identity attributes may not always be fully arranged in a real single adaptor molecule but were comprehensively present in a given tRNA class. A detailed analysis of the resulting models showed that the absolute value of the energy of binding the tandem 35-36 decreases with the number of identity positions, as well as with the decreasing number of possible hydrogen bonds. On the other hand, in these conditions, the absolute value of the energy of binding of other identity nucleotides increases. All the models indicate that the nucleotide-independent energy of the repulsion tRNA backbone decreases with the number of identity nucleotides. It was also shown that the total free energy change in entering the recognition state increases with the amino acid mass, making this process less spontaneous, which may have an evolutionary reference.

PMID:39459628 | DOI:10.3390/life14101328

Categories: Literature Watch

Pages