Systems Biology

A Model for the Gene Regulatory Network Along the Arabidopsis Fruit Medio-Lateral Axis: Rewiring the Pod Shatter Process

Sat, 2024-10-26 06:00

Plants (Basel). 2024 Oct 18;13(20):2927. doi: 10.3390/plants13202927.

ABSTRACT

Different convergent evolutionary strategies adopted by angiosperm fruits lead to diverse functional seed dispersal units. Dry dehiscent fruits are a common type of fruit, characterized by their lack of fleshy pericarp and the release of seeds at maturity through openings (dehiscence zones, DZs) in their structure. In previous decades, a set of core players in DZ formation have been intensively characterized in Arabidopsis and integrated in a gene regulatory network (GRN) that explains the morphogenesis of these tissues. In this work, we compile all the experimental data available to date to build a discrete Boolean model as a mechanistic approach to validate the network and, if needed, to identify missing components of the GRN and/or propose new hypothetical regulatory interactions, but also to provide a new formal framework to feed further work in Brassicaceae fruit development and the evolution of seed dispersal mechanisms. Hence, by means of exhaustive in-silico validations and experimental evidence, we are able to incorporate both the NO TRANSMITTING TRACT (NTT) transcription factor as a new additional node, and a new set of regulatory hypothetical rules to uncover the dynamics of Arabidopsis DZ specification.

PMID:39458874 | DOI:10.3390/plants13202927

Categories: Literature Watch

Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women

Sat, 2024-10-26 06:00

Nutrients. 2024 Oct 16;16(20):3501. doi: 10.3390/nu16203501.

ABSTRACT

Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.

PMID:39458496 | DOI:10.3390/nu16203501

Categories: Literature Watch

Ionizing Radiation Dose Differentially Affects the Host-Microbe Relationship over Time

Sat, 2024-10-26 06:00

Microorganisms. 2024 Sep 30;12(10):1995. doi: 10.3390/microorganisms12101995.

ABSTRACT

Microorganisms that colonize in or on a host play significant roles in regulating the host's immunological fitness and bioenergy production, thus controlling the host's stress responses. Radiation elicits a pro-inflammatory and bioenergy-expensive state, which could influence the gut microbial compositions and, therefore, the host-microbe bidirectional relationship. To test this hypothesis, young adult mice were exposed to total body irradiation (TBI) at doses of 9.5 Gy and 11 Gy, respectively. The irradiated mice were euthanized on days 1, 3, and 9 post TBI, and their descending colon contents (DCCs) were collected. The 16S ribosomal RNAs from the DCCs were screened to find the differentially enriched bacterial taxa due to TBI. Subsequently, these data were analyzed to identify the metagenome-specific biofunctions. The bacterial community of the DCCs showed increased levels of diversity as time progressed following TBI. The abundance profile was the most divergent at day 9 post 11 Gy TBI. For instance, an anti-inflammatory and energy-harvesting bacterium, namely, Firmicutes, became highly abundant and co-expressed in the DCC with pro-inflammatory Deferribacteres at day 9 post 11 Gy TBI. A systems evaluation found a diverging trend in the regulation profiles of the functional networks that were linked to the bacteria and metabolites of the DCCs, respectively. Additionally, the network clusters associated with lipid metabolism and bioenergy synthesis were found to be activated in the DCC bacteria but inhibited in the metabolite space at day 9 post 11 Gy. Taking these results together, the present analysis indicated a disrupted mouse-bacteria symbiotic relationship as time progressed after lethal irradiation. This information can help develop precise interventions to ameliorate the symptoms triggered by TBI.

PMID:39458305 | DOI:10.3390/microorganisms12101995

Categories: Literature Watch

Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis

Sat, 2024-10-26 06:00

Microorganisms. 2024 Sep 29;12(10):1973. doi: 10.3390/microorganisms12101973.

ABSTRACT

As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects and underlying mechanisms of QUE on colitis. Our data demonstrated that QUE oral gavage administration significantly ameliorates the symptoms and histopathological changes associated with colitis. Additionally, the concentration of mucin-2, the number of goblet cells, and the expression of tight junction proteins (such as ZO-1, Occludin, and Claudin-1) were all found to be increased. Furthermore, QUE treatment regulated the levels of inflammatory cytokines and macrophage polarization, as well as the oxidative stress-related pathway (Nrf2/HO-1) and associated enzymes. Additionally, 16S rDNA sequencing revealed that QUE treatment rebalances the alterations in colon microbiota composition (inlcuding Bacteroidaceae, Bacteroides, and Odoribacter) in DSS-induced colitis mice. The analysis of network dynamics reveals a significant correlation between gut microbial communities and microenvironmental factors associated with inflammation and oxidative stress, in conjunction with the previously mentioned findings. Collectively, our results suggest that QUE has the potential to treat colitis by maintaining the mucosal barrier, modulating inflammation, and reducing oxidation stress, which may depend on the reversal of gut microbiota dysbiosis.

PMID:39458282 | DOI:10.3390/microorganisms12101973

Categories: Literature Watch

Peptide-Based Inhibitors of Protein-Protein Interactions (PPIs): A Case Study on the Interaction Between SARS-CoV-2 Spike Protein and Human Angiotensin-Converting Enzyme 2 (hACE2)

Sat, 2024-10-26 06:00

Biomedicines. 2024 Oct 16;12(10):2361. doi: 10.3390/biomedicines12102361.

ABSTRACT

Protein-protein interactions (PPIs) are fundamental to many critical biological processes and are crucial in mediating essential cellular functions across diverse organisms, including bacteria, parasites, and viruses. A notable example is the interaction between the SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 (hACE2), which initiates a series of events leading to viral replication. Interrupting this interaction offers a promising strategy for blocking or significantly reducing infection, highlighting its potential as a target for anti-SARS-CoV-2 therapies. This review focuses on the hACE2 and SARS-CoV-2 spike protein interaction, exemplifying the latest advancements in peptide-based strategies for developing PPI inhibitors. We discuss various approaches for creating peptide-based inhibitors that target this critical interaction, aiming to provide potential treatments for COVID-19.

PMID:39457672 | DOI:10.3390/biomedicines12102361

Categories: Literature Watch

Research Progress on Genomic Regions and Candidate Genes Related to Milk Composition Traits of Dairy Goats Based on Functional Genomics: A Narrative Review

Sat, 2024-10-26 06:00

Genes (Basel). 2024 Oct 19;15(10):1341. doi: 10.3390/genes15101341.

ABSTRACT

BACKGROUND: Goat milk has gained global attention for its unique nutritional properties and potential health benefits. Advancements in functional genomic technologies have significantly progressed genetic research on milk composition traits in dairy goats.

RESULTS: This review summarizes various research methodologies applied in this field. Genome-wide association studies (GWAS) have identified genomic regions associated with major milk components, with the diacylglycerol acyltransferase 1 (DGAT1) gene and casein gene cluster consistently linked to milk composition traits. Transcriptomics has revealed gene expression patterns in mammary tissue across lactation stages, while the role of non-coding RNAs (such as miRNAs and circRNAs) in regulating milk composition has been confirmed. Proteomic and metabolomic studies have not only helped us gain a more comprehensive understanding of goat milk composition characteristics but have also provided crucial support for the functional validation of genes related to milk components. The integration of multi-omics data has emerged as an effective strategy for elucidating complex regulatory networks from a systems biology perspective.

CONCLUSIONS: Despite progress, challenges remain, including refining reference genomes, collecting large-scale phenotypic data, and conducting functional validations. Future research should focus on improving reference genomes, expanding study populations, investigating functional milk components, exploring epigenetic regulation and non-coding RNAs, and studying microbiome-host genome interactions. These efforts will inform more precise genomic and marker-assisted selection strategies, advancing genetic improvements in milk composition traits in dairy goats.

PMID:39457465 | DOI:10.3390/genes15101341

Categories: Literature Watch

The Expression of Cytokines and Chemokines Potentially Distinguishes Mild and Severe Psoriatic Non-Lesional and Resolved Skin from Healthy Skin and Indicates Different Stages of Inflammation

Sat, 2024-10-26 06:00

Int J Mol Sci. 2024 Oct 20;25(20):11292. doi: 10.3390/ijms252011292.

ABSTRACT

In the psoriatic non-lesional (PS-NL) skin, the tissue environment potentially influences the development and recurrence of lesions. Therefore, we aimed to investigate mechanisms involved in regulating tissue organization in PS-NL skin. Cytokine, chemokine, protease, and protease inhibitor levels were compared between PS-NL skin of patients with mild and severe symptoms and healthy skin. By comparing mild and severe PS-NL vs. healthy skin, differentially expressed cytokines and chemokines suggested alterations in hemostasis-related processes, while protease inhibitors showed no psoriasis severity-related changes. Comparing severe and mild PS-NL skin revealed disease severity-related changes in the expression of proteases, cytokines, and chemokines primarily involving methyl-CpG binding protein 2 (MECP2) and extracellular matrix organization-related mechanisms. Cytokine and chemokine expression in clinically resolved versus healthy skin showed slight interleukin activity, differing from patterns in mild and severe PS-NL skin. Immunofluorescence analysis revealed the severity-dependent nuclear expression pattern of MECP2 and decreased expression of 5-methylcytosine and 5-hydroxymethylcytosine in the PS-NL vs. healthy skin, and in resolved vs. healthy skin. Our results suggest distinct cytokine-chemokine signaling between the resolved and PS-NL skin of untreated patients with varying severities. These results highlight an altered inflammatory response, epigenetic regulation, and tissue organization in different types of PS-NL skin with possibly distinct, severity-dependent para-inflammatory states.

PMID:39457071 | DOI:10.3390/ijms252011292

Categories: Literature Watch

Multi-Omics Analysis Identified Drug Repurposing Targets for Chronic Obstructive Pulmonary Disease

Sat, 2024-10-26 06:00

Int J Mol Sci. 2024 Oct 16;25(20):11106. doi: 10.3390/ijms252011106.

ABSTRACT

Despite recent advances in chronic obstructive pulmonary disease (COPD) research, few studies have identified the potential therapeutic targets systematically by integrating multiple-omics datasets. This project aimed to develop a systems biology pipeline to identify biologically relevant genes and potential therapeutic targets that could be exploited to discover novel COPD treatments via drug repurposing or de novo drug discovery. A computational method was implemented by integrating multi-omics COPD data from unpaired human samples of more than half a million subjects. The outcomes from genome, transcriptome, proteome, and metabolome COPD studies were included, followed by an in silico interactome and drug-target information analysis. The potential candidate genes were ranked by a distance-based network computational model. Ninety-two genes were identified as COPD signature genes based on their overall proximity to signature genes on all omics levels. They are genes encoding proteins involved in extracellular matrix structural constituent, collagen binding, protease binding, actin-binding proteins, and other functions. Among them, 70 signature genes were determined to be druggable targets. The in silico validation identified that the knockout or over-expression of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes may drive the cell transcriptomics to a status similar to or contrasting with COPD. While some genes identified in our pipeline have been previously associated with COPD pathology, others represent possible new targets for COPD therapy development. In conclusion, we have identified promising therapeutic targets for COPD. This hypothesis-generating pipeline was supported by unbiased information from available omics datasets and took into consideration disease relevance and development feasibility.

PMID:39456887 | DOI:10.3390/ijms252011106

Categories: Literature Watch

<em>AtC3H3</em>, an <em>Arabidopsis</em> Non-TZF Gene, Enhances Salt Tolerance by Increasing the Expression of Both ABA-Dependent and -Independent Stress-Responsive Genes

Sat, 2024-10-26 06:00

Int J Mol Sci. 2024 Oct 11;25(20):10943. doi: 10.3390/ijms252010943.

ABSTRACT

Salinity causes widespread crop loss and prompts plants to adapt through changes in gene expression. In this study, we aimed to investigate the function of the non-tandem CCCH zinc-finger (non-TZF) protein gene AtC3H3 in response to salt stress in Arabidopsis. AtC3H3, a gene from the non-TZF gene family known for its RNA-binding and RNase activities, was up-regulated under osmotic stress, such as high salt and drought. When overexpressed in Arabidopsis, AtC3H3 improved tolerance to salt stress, but not drought stress. The expression of well-known abscisic acid (ABA)-dependent salt stress-responsive genes, namely Responsive to Desiccation 29B (RD29B), RD22, and Responsive to ABA 18 (RAB18), and representative ABA-independent salt stress-responsive genes, namely Dehydration-Responsive Element Binding protein 2A (DREB2A) and DREB2B, was significantly higher in AtC3H3-overexpressing transgenic plants (AtC3H3 OXs) than in wild-type plants (WT) under NaCl treatment, indicating its significance in both ABA-dependent and -independent signal transduction pathways. mRNA-sequencing (mRNA-Seq) analysis using NaCl-treated WT and AtC3H3 OXs revealed no potential target mRNAs for the RNase function of AtC3H3, suggesting that the potential targets of AtC3H3 might be noncoding RNAs and not mRNAs. Through this study, we conclusively demonstrated that AtC3H3 plays a crucial role in salt stress tolerance by influencing the expression of salt stress-responsive genes. These findings offer new insights into plant stress response mechanisms and suggest potential strategies for improving crop resilience to salinity stress.

PMID:39456724 | DOI:10.3390/ijms252010943

Categories: Literature Watch

Intratumoral Heterogeneity and Metabolic Cross-Feeding in a Three-Dimensional Breast Cancer Culture: An In Silico Perspective

Sat, 2024-10-26 06:00

Int J Mol Sci. 2024 Oct 10;25(20):10894. doi: 10.3390/ijms252010894.

ABSTRACT

Today, the intratumoral composition is a relevant factor associated with the progression and aggression of cancer. Although it suggests a metabolic interdependence among the subpopulations inside the tumor, a detailed map of how this interdependence contributes to the malignant phenotype is still lacking. To address this issue, we developed a systems biology approach integrating single-cell RNASeq and genome-scale metabolic reconstruction to map the metabolic cross-feeding among the subpopulations previously identified in the spheroids of MCF7 breast cancer. By calibrating our model with expression profiles and the experimental growth rate, we concluded that the reverse Warburg effect emerges as a mechanism to optimize community growth. Furthermore, through an in silico analysis, we identified lactate, alpha-ketoglutarate, and some amino acids as key metabolites whose disponibility alters the growth rate of the spheroid. Altogether, this work provides a strategy for assessing how space and intratumoral heterogeneity influence the metabolic robustness of cancer, issues suggesting that computational strategies should move toward the design of optimized treatments.

PMID:39456679 | DOI:10.3390/ijms252010894

Categories: Literature Watch

The Diversity of Methylation Patterns in Serous Borderline Ovarian Tumors and Serous Ovarian Carcinomas

Sat, 2024-10-26 06:00

Cancers (Basel). 2024 Oct 18;16(20):3524. doi: 10.3390/cancers16203524.

ABSTRACT

Background: Changes in DNA methylation patterns are a pivotal mechanism of carcinogenesis. In some tumors, aberrant methylation precedes genetic changes, while gene expression may be more frequently modified due to methylation alterations than by mutations. Methods: Herein, 128 serous ovarian tumors were analyzed, including borderline ovarian tumors (BOTS) with (BOT.V600E) and without (BOT) the BRAF V600E mutation, low-grade (lg), and high-grade (hg) ovarian cancers (OvCa). The methylome of the samples was profiled with Infinium MethylationEPIC microarrays. Results: The biggest number of differentially methylated (DM) CpGs and regions (DMRs) was found between lgOvCa and hgOvCa. By contrast, the BOT.V600E tumors had the lowest number of DM CpGs and DMRs compared to all other groups and, in relation to BOT, their genome was strongly downmethylated. Remarkably, the ten most significant DMRs, discriminating BOT from lgOvCa, encompassed the MHC region on chromosome 6. We also identified hundreds of DMRs, being of potential use as predictive biomarkers in BOTS and hgOvCa. DMRs with the best discriminative capabilities overlapped the following genes: BAIAP3, IL34, WNT10A, NEU1, SLC44A4, and HMOX1, TCN2, PES1, RP1-56J10.8, ABR, NCAM1, RP11-629G13.1, AC006372.4, NPTXR in BOTS and hgOvCa, respectively. Conclusions: The global genome-wide hypomethylation positively correlates with the increasing aggressiveness of ovarian tumors. We also assume that the immune system may play a pivotal role in the transition from BOTS to lgOvCa. Given that the BOT.V600E tumors had the lowest number of DM CpGs and DMRs compared to all other groups, when methylome is considered, such tumors might be placed in-between BOT and OvCa.

PMID:39456618 | DOI:10.3390/cancers16203524

Categories: Literature Watch

<em>ARAF</em> Amplification in Small-Cell Lung Cancer-Transformed Tumors Following Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors

Sat, 2024-10-26 06:00

Cancers (Basel). 2024 Oct 16;16(20):3501. doi: 10.3390/cancers16203501.

ABSTRACT

BACKGROUND/OBJECTIVES: Although tyrosine kinase inhibitors (TKIs) targeting EGFR-activating mutations significantly improved the outcome of EGFR-mutant NSCLC, resistance inevitably emerges. Despite the heterogeneity of these resistance mechanisms, many induce activation of MAPK signaling in the presence of EGFR-TKIs. While ARAF gene amplification is identified as a resistance mechanism that activates MAPK signaling by directly interacting with RAS, little is known about its clinicopathologic characteristics.

METHODS: We conducted a single-center retrospective analysis of the presence of ARAF amplification in re-biopsied samples in patients with EGFR-mutant NSCLC resistant to EGFR-TKIs. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. ARAF amplification was determined using a gene copy number assay. RNA sequence analysis was performed in patients with ARAF amplification as well as presenting histologic transformations to small-cell lung carcinoma (SCLC).

RESULTS: ARAF amplification was identified in five of ninety-seven patients resistant to erlotinib or gefitinib, and four of forty-eight patients resistant to Osimertinib. ARAF amplification was dominantly observed in female patients with EGFR exon 19 deletion. All ARAF-amplified tumors retained their founder EGFR mutation and were absent of secondary mutations. Two cases were found where ARAF amplification correlated with a histological transformation to SCLC.

CONCLUSIONS: ARAF amplification was identified in 5-8% of EGFR-TKI-resistant tumors. The possible roles of ARAF in SCLC transformation warrant further investigation.

PMID:39456595 | DOI:10.3390/cancers16203501

Categories: Literature Watch

Chemical Composition and Antioxidant Activity of Six <em>Allium</em> Extracts Using Protein-Based Biomimetic Methods

Sat, 2024-10-26 06:00

Antioxidants (Basel). 2024 Sep 29;13(10):1182. doi: 10.3390/antiox13101182.

ABSTRACT

Medicinal plants are a valuable reservoir of novel pharmacologically active compounds. ROS and free radicals are primary contributors to oxidative stress, a condition associated with the onset of degenerative diseases such as cancer, coronary heart disease, and vascular disease. In this study, we used different spectrophotometry methods to demonstrate the antioxidant properties of 6 Allium extracts: Allium fistulosum; Allium ursinum; Allium cepa: Arieș red cultivar of A. cepa, and white variety of A. cepa; Allium sativum; and Allium senescens subsp. montanum. HPLC-MS determined the chemical composition of the extracts. Among the tested extracts, the Arieș red cultivar of A. cepa stands out as having the best antioxidant activity, probably due to the high content of polyphenols and alliin (12.67 µg/mL and 3565 ng/mL, respectively). The results obtained in this study show that Allium extracts have antioxidant activity, but also free radical scavenging capabilities. Also, their interactions with cytochrome c and hemoglobin can be the basis of future studies to create treatments for oxidative stress-related diseases.

PMID:39456436 | DOI:10.3390/antiox13101182

Categories: Literature Watch

Chloramphenicol Interferes with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms

Sat, 2024-10-26 06:00

Biomolecules. 2024 Sep 27;14(10):1225. doi: 10.3390/biom14101225.

ABSTRACT

Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the 50S ribosomal subunit in Escherichia coli (E. coli). Using label-free quantitative mass spectrometry (LFQ-MS), we observed that CAM treatment also leads to the upregulation of assembly factors. Further cryo-electron microscopy (cryo-EM) analysis of the ribosomal precursors characterized the CAM-treatment-accumulated pre-50S intermediates. Heterogeneous reconstruction identified 26 distinct pre-50S intermediates, which were categorized into nine main states based on their structural features. Our structural analysis highlighted that CAM severely impedes the formation of the central protuberance (CP), H89, and H58 during 50S ribosomal subunit maturation. The ELISA assay further demonstrated the direct binding of CAM to the ribosomal precursors, suggesting that the interference with 50S maturation occurs through a combination of direct and indirect mechanisms. These findings provide new insights into the mechanism of the action of CAM and provide a foundation for a better understanding of the assembly landscapes of the ribosome.

PMID:39456158 | DOI:10.3390/biom14101225

Categories: Literature Watch

Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds

Sat, 2024-10-26 06:00

IMA Fungus. 2024 Oct 25;15(1):31. doi: 10.1186/s43008-024-00165-6.

ABSTRACT

In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.

PMID:39456087 | DOI:10.1186/s43008-024-00165-6

Categories: Literature Watch

Accelerating adverse pregnancy outcomes research amidst rising medication use: parallel retrospective cohort analyses for signal prioritization

Fri, 2024-10-25 06:00

BMC Med. 2024 Oct 25;22(1):495. doi: 10.1186/s12916-024-03717-0.

ABSTRACT

BACKGROUND: Pregnant women are significantly underrepresented in clinical trials, yet most of them take medication during pregnancy despite the limited safety data. The objective of this study was to characterize medication use during pregnancy and apply propensity score matching method at scale on patient records to accelerate and prioritize the drug effect signal detection associated with the risk of preterm birth and other adverse pregnancy outcomes.

METHODS: This was a retrospective study on continuously enrolled women who delivered live births between 2013/01/01 and 2022/12/31 (n = 365,075) at Providence St. Joseph Health. Our exposures of interest were all outpatient medications prescribed during pregnancy. We limited our analyses to medication that met the minimal sample size (n = 600). The primary outcome of interest was preterm birth. Secondary outcomes of interest were small for gestational age and low birth weight. We used propensity score matching at scale to evaluate the risk of these adverse pregnancy outcomes associated with drug exposure after adjusting for demographics, pregnancy characteristics, and comorbidities.

RESULTS: The total medication prescription rate increased from 58.5 to 75.3% (P < 0.0001) from 2013 to 2022. The prevalence rate of preterm birth was 7.7%. One hundred seventy-five out of 1329 prenatally prescribed outpatient medications met the minimum sample size. We identified 58 medications statistically significantly associated with the risk of preterm birth (P ≤ 0.1; decreased: 12, increased: 46).

CONCLUSIONS: Most pregnant women are prescribed medication during pregnancy. This highlights the need to utilize existing real-world data to enhance our knowledge of the safety of medications in pregnancy. We narrowed down from 1329 to 58 medications that showed statistically significant association with the risk of preterm birth even after addressing numerous covariates through propensity score matching. This data-driven approach demonstrated that multiple testable hypotheses in pregnancy pharmacology can be prioritized at scale and lays the foundation for application in other pregnancy outcomes.

PMID:39456023 | DOI:10.1186/s12916-024-03717-0

Categories: Literature Watch

Diversity of attachment systems in heelwalkers (Mantophasmatodea) - highly specialized, but uniform

Fri, 2024-10-25 06:00

BMC Ecol Evol. 2024 Oct 25;24(1):130. doi: 10.1186/s12862-024-02319-x.

ABSTRACT

BACKGROUND: Heelwalkers possess a highly modified tarsal attachment system. All extant species lift the distalmost tarsomere permanently off the substrate and primarily use their euplantulae for locomotion. The combination of a smooth adhesive pad (arolium) on the pretarsus and fibrillary attachment pads on the euplantulae offers valuable insights for translational approaches, but its infra-order diversity remains unexplored.

RESULTS: We explored the morphology of the tarsal attachment apparatus of Mantophasmatodea based on a representative taxon sampling spanning a large fraction of species of this group and compared morphological differences in the specialized morphology of this system across species and sexes. Our scanning electron microscope investigation of the tarsi of 11 species (52% of all described extant species) revealed an overall very consistent ground pattern and almost no specific adaptations. There are only minor, but mostly clade-specific differences in the shape of the adhesive setae on the tarsal euplantulae and in the morphology and density of the acanthae on the pretarsal arolium. Both features differ primarily between Austrophasmatidae in comparison to the remaining Mantophasmatodea taxa.

CONCLUSION: We conclude that the strong specialization of the mantophasmatodean tarsal attachment sufficiently copes with the diversity of substrates the insects are exposed to.

PMID:39455927 | DOI:10.1186/s12862-024-02319-x

Categories: Literature Watch

Macrophage GPNMB-mediated cardiac repair

Fri, 2024-10-25 06:00

Nat Cardiovasc Res. 2024 Oct 25. doi: 10.1038/s44161-024-00559-0. Online ahead of print.

NO ABSTRACT

PMID:39455835 | DOI:10.1038/s44161-024-00559-0

Categories: Literature Watch

HNCDrugResDb: a platform for deciphering drug resistance in head and neck cancers

Fri, 2024-10-25 06:00

Sci Rep. 2024 Oct 25;14(1):25327. doi: 10.1038/s41598-024-75861-9.

ABSTRACT

Drug resistance poses a significant obstacle to the success of anti-cancer therapy in head and neck cancers (HNCs). We aim to develop a platform for visualizing and analyzing molecular expression alterations associated with HNC drug resistance. Through data mining, we convened differentially expressed molecules and context-specific signaling events involved in drug resistance. The driver genes, interaction networks and transcriptional regulations were explored using bioinformatics approaches. A total of 2364 differentially expressed molecules were identified in 78 distinct drug-resistant cells against 14 anti-cancer drugs, comprising 1131 mRNAs, 746 proteins, 62 lncRNAs, 257 miRNAs, 1 circRNA, and 166 post-translational modifications. Among these, 255 molecules were considerably, the signature driver genes of HNC drug resistance. Further, we also developed a landscape of signaling pathways and their cross-talk with diverse signaling modules involved in drug resistance. Additionally, a publicly-accessible database named "HNCDrugResDb" was designed with browse, query, and pathway explorer options to fetch and enrich molecular alterations and signaling pathways altered in drug resistance. HNCDrugResDb is also enabled with a Drug Resistance Analysis tool as an initial platform to infer the likelihood of resistance based on the expression pattern of driver genes. HNCDrugResDb is anticipated to have substantial implications for future advancements in drug discovery and optimization of personalized medicine approaches.

PMID:39455682 | DOI:10.1038/s41598-024-75861-9

Categories: Literature Watch

Chronic interferon-stimulated gene transcription promotes oncogene-induced breast cancer

Fri, 2024-10-25 06:00

Genes Dev. 2024 Oct 25. doi: 10.1101/gad.351455.123. Online ahead of print.

ABSTRACT

The MRE11 complex (comprising MRE11, RAD50, and NBS1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic Mre11 mutant mouse strain (Mre11 ATLD1/ATLD1 ) was highly susceptible to oncogene-induced breast cancer. Here we used a mammary organoid system to examine which MRE11-dependent responses are tumor-suppressive. We found that Mre11 ATLD1/ATLD1 organoids exhibited an elevated interferon-stimulated gene (ISG) signature and sustained changes in chromatin accessibility. This Mre11 ATLD1/ATLD1 phenotype depended on DNA binding of a nuclear innate immune sensor, IFI205. Ablation of Ifi205 in Mre11 ATLD1/ATLD1 organoids restored baseline and oncogene-induced chromatin accessibility patterns to those observed in WT. Implantation of Mre11 ATLD1/ATLD1 organoids and activation of the oncogene led to aggressive metastatic breast cancer. This outcome was reversed in implanted Ifi205 -/- Mre11 ATLD1/ATLD1 organoids. These data reveal a connection between innate immune signaling and tumor development in the mammary epithelium. Given the abundance of aberrant DNA structures that arise in the context of genome instability syndromes, the data further suggest that cancer predisposition in those contexts may be partially attributable to chronic innate immune transcriptional programs.

PMID:39455282 | DOI:10.1101/gad.351455.123

Categories: Literature Watch

Pages