Systems Biology
Molecular characterization of nodose ganglia development reveals a novel population of Phox2b+ glial progenitors in mice
J Neurosci. 2024 Jun 3:e1441232024. doi: 10.1523/JNEUROSCI.1441-23.2024. Online ahead of print.
ABSTRACT
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck, or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single cell RNA-sequencing (scRNA-seq) to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes, and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells and display a transcriptional program that may underlie their bipotent nature.Significance statement The nodose ganglia contain sensory neurons that innervate inner organs and play key roles in homeostatic behaviors like digestion, regulation of blood pressure and heart rate, and breathing. Nodose sensory neurons are supported by nodose glial cells, which are understudied compared to their neuronal neighbors. Specifically, the genetic program governing their development is not fully understood. Here, we uncover a transcriptional program unique to nodose glial cells (transient expression of Phox2b) that resolves the 40-year-old finding that nodose glial progenitors can also give rise to autonomic neurons (whose development depends on Phox2b expression). Lastly, we leveraged single cell RNA-sequencing to identify the four major subtypes of nodose glial cells and used subtype specific marker genes to map their spatial distribution.
PMID:38830761 | DOI:10.1523/JNEUROSCI.1441-23.2024
Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander
Sci Total Environ. 2024 Jun 1:173656. doi: 10.1016/j.scitotenv.2024.173656. Online ahead of print.
ABSTRACT
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
PMID:38830414 | DOI:10.1016/j.scitotenv.2024.173656
miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner
EMBO Rep. 2024 Jun 3. doi: 10.1038/s44319-024-00168-9. Online ahead of print.
ABSTRACT
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
PMID:38831125 | DOI:10.1038/s44319-024-00168-9
Author Correction: Nuclear genetic control of mtDNA copy number and heteroplasmy in humans
Nature. 2024 Jun 3. doi: 10.1038/s41586-024-07364-6. Online ahead of print.
NO ABSTRACT
PMID:38831054 | DOI:10.1038/s41586-024-07364-6
High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection
Nat Genet. 2024 Jun 3. doi: 10.1038/s41588-024-01779-7. Online ahead of print.
ABSTRACT
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
PMID:38831009 | DOI:10.1038/s41588-024-01779-7
Proton-driven sodium secretion in a saline water animal
Sci Rep. 2024 Jun 3;14(1):12738. doi: 10.1038/s41598-024-62974-4.
ABSTRACT
Aquatic animals residing in saline habitats either allow extracellular sodium concentration to conform to environmental values or regulate sodium to lower levels. The latter strategy requires an energy-driven process to move sodium against a large concentration gradient to eliminate excess sodium that diffuses into the animal. Previous studies of invertebrate and vertebrate species indicate a sodium pump, Na+/K+ ATPase, powers sodium secretion. We provide the first functional evidence of a saline-water animal, Aedes taeniorhynchus mosquito larva, utilizing a proton pump to power this process. Vacuolar-type H+ ATPase (VHA) protein is highly expressed on the apical membrane of the posterior rectal cells, and in situ sodium flux across this epithelium increases significantly in larvae held in higher salinity and is sensitive to Bafilomycin A1, an inhibitor of VHA. We also report the first evidence of splice variants of the sodium/proton exchanger, NHE3, with both high and low molecular weight variants highly expressed on the apical membrane of the posterior rectal cells. Evidence of NHE3 function was indicated with in situ sodium transport significantly inhibited by a NHE3 antagonist, S3226. We propose that the outward proton pumping by VHA establishes a favourable electromotive gradient to drive sodium secretion via NHE3 thus producing a hyperosmotic, sodium-rich urine. This H+- driven Na+ secretion process is the primary mechanism of ion regulation in salt-tolerant culicine mosquito species and was first investigated over 80 years ago.
PMID:38830894 | DOI:10.1038/s41598-024-62974-4
Dormant origin firing promotes head-on transcription-replication conflicts at transcription termination sites in response to BRCA2 deficiency
Nat Commun. 2024 Jun 3;15(1):4716. doi: 10.1038/s41467-024-48286-1.
ABSTRACT
BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.
PMID:38830843 | DOI:10.1038/s41467-024-48286-1
Development and Application of a Mitochondrial Genetically Encoded Voltage Indicator in Narcosis
Neurosci Bull. 2024 Jun 3. doi: 10.1007/s12264-024-01235-w. Online ahead of print.
ABSTRACT
Mitochondrial membrane potential (MMP) plays a crucial role in the function of cells and organelles, involving various cellular physiological processes, including energy production, formation of reactive oxygen species (ROS), unfolded protein stress, and cell survival. Currently, there is a lack of genetically encoded fluorescence indicators (GEVIs) for MMP. In our screening of various GEVIs for their potential monitoring MMP, the Accelerated Sensor of Action Potentials (ASAP) demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types. However, mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes. Therefore, two ASAP mutants resistant to ROS were generated. A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence. Overall, four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4 (MPI-1-4). In vivo, fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
PMID:38829505 | DOI:10.1007/s12264-024-01235-w
The essential role of aggregation for the emulsifying ability of a fungal CYS-rich protein
Appl Microbiol Biotechnol. 2024 Jun 3;108(1):358. doi: 10.1007/s00253-024-13182-7.
ABSTRACT
Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.
PMID:38829381 | DOI:10.1007/s00253-024-13182-7
Dipeptidyl peptidase 4 interacts with porcine coronavirus PHEV spikes and mediates host range expansion
J Virol. 2024 Jun 3:e0075324. doi: 10.1128/jvi.00753-24. Online ahead of print.
ABSTRACT
Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus, is prevalent in natural reservoir pigs and infects mice. This raises concerns about host jumping or spillover, but little is known about the cause of occurrence. Here, we revealed that dipeptidyl peptidase 4 (DPP4) is a candidate binding target of PHEV spikes and works as a broad barrier to overcome. Investigations of the host breadth of PHEV confirmed that cells derived from pigs and mice are permissive to virus propagation. Both porcine DPP4 and murine DPP4 have high affinity for the viral spike receptor-binding domain (RBD), independent of their catalytic activity. Loss of DPP4 expression results in limited PHEV infection. Structurally, PHEV spike protein binds to the outer surface of blades IV and V of the DPP4 β-propeller domain, and the DPP4 residues N229 and N321 (relative to human DPP4 numbering) participate in RBD binding via its linked carbohydrate entities. Removal of these N-glycosylations profoundly enhanced the RBD-DPP4 interaction and viral invasion, suggesting they act as shielding in PHEV infection. Furthermore, we found that glycosylation, rather than structural differences or surface charges, is more responsible for DPP4 recognition and species barrier formation. Overall, our findings shed light on virus-receptor interactions and highlight that PHEV tolerance to DPP4 orthologs is a putative determinant of its cross-species transmission or host range expansion.IMPORTANCEPHEV is a neurotropic betacoronavirus that is circulating worldwide and has raised veterinary and economic concerns. In addition to being a reservoir species of pigs, PHEV can also infect wild-type mice, suggesting a "host jump" event. Understanding cross-species transmission is crucial for disease prevention and control but remains to be addressed. Herein, we show that the multifunctional receptor DPP4 plays a pivotal role in the host tropism of PHEV and identifies the conserved glycosylation sites in DPP4 responsible for this restriction. These findings highlight that the ability of PHEV to utilize DPP4 orthologs potentially affects its natural host expansion.
PMID:38829136 | DOI:10.1128/jvi.00753-24
The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions
mSystems. 2024 Jun 3:e0030524. doi: 10.1128/msystems.00305-24. Online ahead of print.
ABSTRACT
Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which cells must balance tradeoffs in resource allocation between diverse functions. One such balance between stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g) tradeoff. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast growth have been previously shown to affect the f/g tradeoff, suggesting that genetic adaptations may be primed to control f/g resource allocation. Here, we conduct a greatly expanded study of the genetic control of the f/g tradeoff across diverse conditions. We introduced 12 RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and obtained expression profiles of each. We found that these single RNAP mutation strains resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes, likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused condition-specific transcriptional adaptations. While this tradeoff was previously characterized by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial species. The results suggest that the f/g tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.IMPORTANCETo increase growth, E. coli must raise ribosomal content at the expense of non-growth functions. Previous studies have linked RNAP mutations to this transcriptional shift and increased growth but were focused on only two mutations found in the protein's central region. RNAP mutations, however, commonly occur over a large structural range. To explore RNAP mutations' impact, we have introduced 12 RNAP mutations found in laboratory evolution experiments and obtained expression profiles of each. The mutations nearly universally increased growth rates by adjusting said tradeoff away from non-growth functions. In addition to this shift, a few caused condition-specific adaptations. We explored the prevalence of this tradeoff across phylogeny and found it to be a widespread and conserved trend among bacteria.
PMID:38829048 | DOI:10.1128/msystems.00305-24
Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokinces on muscle regeneration
Elife. 2024 Jun 3;13:RP91924. doi: 10.7554/eLife.91924.
ABSTRACT
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
PMID:38828844 | DOI:10.7554/eLife.91924
Immunoglobulin A vasculitis: The clinical features and pathophysiology
Kaohsiung J Med Sci. 2024 Jun 3. doi: 10.1002/kjm2.12852. Online ahead of print.
ABSTRACT
Palpable purpura, gastrointestinal symptoms, joint involvement, and renal disease characterize immunoglobulin A vasculitis (IgAV). Renal involvement ranging from mild proteinuria to severe nephritic or nephrotic syndrome highlights the importance of monitoring kidney function in patients with IgAV. Recognizing these key features is crucial for early diagnosis and appropriate management to prevent long-term complications related to kidney disease. However, the pathogenesis of IgAV remains unclear. Disease mechanisms involve various factors, including the interplay of aberrantly glycosylated IgA, anti-endothelial cell antibodies, and neutrophils following infection triggers, which are the main pathogenic mechanisms of IgAV. Insights from cases of IgAV related to Coronavirus disease 2019 have offered additional understanding of the connection between infection and IgAV pathogenesis. This review provides a valuable resource for healthcare professionals and rheumatology researchers seeking a better understanding of the clinical features and pathophysiology of IgAV.
PMID:38828518 | DOI:10.1002/kjm2.12852
An Update to the SBML Human-Readable Antimony Language
ArXiv [Preprint]. 2024 May 23:arXiv:2405.15109v1.
ABSTRACT
Antimony is a high-level, human-readable text-based language designed for defining and sharing models in the systems biology community. It enables scientists to describe biochemical networks and systems using a simple and intuitive syntax. It allows users to easily create, modify, and distribute reproducible computational models. By allowing the concise representation of complex biological processes, Antimony enhances collaborative efforts, improves reproducibility, and accelerates the iterative development of models in systems biology. This paper provides an update to the Antimony language since it was introduced in 2009. In particular, we highlight new annotation features, support for flux balance analysis, a new rateOf method, support for probability distributions and uncertainty, named stochiometries, and algebraic rules. Antimony is also now distributed as a C/C++ library, together with python and Julia bindings, as well as a JavaScript version for use within a web browser. Availability: https://github.com/sys-bio/antimony.
PMID:38827452 | PMC:PMC11142327
Unraveling biochemical spatial patterns: Machine learning approaches to the inverse problem of stationary Turing patterns
iScience. 2024 Apr 29;27(6):109822. doi: 10.1016/j.isci.2024.109822. eCollection 2024 Jun 21.
ABSTRACT
The diffusion-driven Turing instability is a potential mechanism for spatial pattern formation in numerous biological and chemical systems. However, engineering these patterns and demonstrating that they are produced by this mechanism is challenging. To address this, we aim to solve the inverse problem in artificial and experimental Turing patterns. This task is challenging since patterns are often corrupted by noise and slight changes in initial conditions can lead to different patterns. We used both least squares to explore the problem and physics-informed neural networks to build a noise-robust method. We elucidate the functionality of our network in scenarios mimicking biological noise levels and showcase its application using an experimentally obtained chemical pattern. The findings reveal the significant promise of machine learning in steering the creation of synthetic patterns in bioengineering, thereby advancing our grasp of morphological intricacies within biological systems while acknowledging existing limitations.
PMID:38827409 | PMC:PMC11140185 | DOI:10.1016/j.isci.2024.109822
Genomic insights into CKX genes: key players in cotton fibre development and abiotic stress responses
PeerJ. 2024 May 30;12:e17462. doi: 10.7717/peerj.17462. eCollection 2024.
ABSTRACT
Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.
PMID:38827302 | PMC:PMC11144395 | DOI:10.7717/peerj.17462
Quantifying fecal and plasma short-chain fatty acids in healthy Thai individuals
Comput Struct Biotechnol J. 2024 May 8;23:2163-2172. doi: 10.1016/j.csbj.2024.05.007. eCollection 2024 Dec.
ABSTRACT
Short-chain fatty acids (SCFAs) are involved in important physiological processes such as gut health and immune response, and changes in SCFA levels can be indicative of disease. Despite the importance of SCFAs in human health and disease, reference values for fecal and plasma SCFA concentrations in healthy individuals are scarce. To address this gap in current knowledge, we developed a simple and reliable derivatization-free GC-TOFMS method for quantifying fecal and plasma SCFAs in healthy individuals. We targeted six linear- and seven branched-SCFAs, obtaining method recoveries of 73-88% and 83-134% in fecal and plasma matrices, respectively. The developed methods are simpler, faster, and more sensitive than previously published methods and are well suited for large-scale studies. Analysis of samples from 157 medically confirmed healthy individuals showed that the total SCFAs in the feces and plasma were 34.1 ± 15.3 µmol/g and 60.0 ± 45.9 µM, respectively. In fecal samples, acetic acid (Ace), propionic acid (Pro), and butanoic acid (But) were all significant, collectively accounting for 89% of the total SCFAs, whereas the only major SCFA in plasma samples was Ace, constituting of 93% of the total plasma SCFAs. There were no statistically significant differences in the total fecal and plasma SCFA concentrations between sexes or among age groups. The data revealed, however, a positive correlation for several nutrients, such as carbohydrate, fat, iron from vegetables, and water, to most of the targeted SCFAs. This is the first large-scale study to report SCFA reference intervals in the plasma and feces of healthy individuals, and thereby delivers valuable data for microbiome, metabolomics, and biomarker research.
PMID:38827233 | PMC:PMC11141283 | DOI:10.1016/j.csbj.2024.05.007
Merging Metabolic Modeling and Imaging for Screening Therapeutic Targets in Colorectal Cancer
bioRxiv [Preprint]. 2024 May 25:2024.05.24.595756. doi: 10.1101/2024.05.24.595756.
ABSTRACT
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved high-throughput computational screening to investigate the effects of enzyme perturbations predicted by a computational model of CRC metabolism to understand system-wide effects efficiently. Our results highlighted hexokinase (HK) as one of the crucial targets, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF conditioned media exhibited increased sensitivity to HK inhibition. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.
PMID:38826317 | PMC:PMC11142224 | DOI:10.1101/2024.05.24.595756
Challenges and Considerations in Implementing Doxycycline Post-Exposure Prophylaxis for Sexually Transmitted Infection Prevention in China
Clin Infect Dis. 2024 Jun 3:ciae309. doi: 10.1093/cid/ciae309. Online ahead of print.
NO ABSTRACT
PMID:38825884 | DOI:10.1093/cid/ciae309
Pooled CRISPR Interference Screening Identifies Crucial Transcription Factors in Gas-Fermenting <em>Clostridium ljungdahlii</em>
ACS Synth Biol. 2024 Jun 2. doi: 10.1021/acssynbio.4c00175. Online ahead of print.
ABSTRACT
Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.
PMID:38825826 | DOI:10.1021/acssynbio.4c00175