Systems Biology

Acute depletion of BRG1 reveals its primary function as an activator of transcription

Wed, 2024-05-29 06:00

Nat Commun. 2024 May 29;15(1):4561. doi: 10.1038/s41467-024-48911-z.

ABSTRACT

The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.

PMID:38811575 | DOI:10.1038/s41467-024-48911-z

Categories: Literature Watch

Corrigendum to "CAMSAP3-mediated regulation of HMGB1 acetylation and subcellular localization in lung cancer cells: Implications for cell death modulation". [BBA - General Subjects (2024) 1868: 130614]

Wed, 2024-05-29 06:00

Biochim Biophys Acta Gen Subj. 2024 May 28:130644. doi: 10.1016/j.bbagen.2024.130644. Online ahead of print.

NO ABSTRACT

PMID:38811265 | DOI:10.1016/j.bbagen.2024.130644

Categories: Literature Watch

A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis

Wed, 2024-05-29 06:00

Nucleic Acids Res. 2024 May 30:gkae399. doi: 10.1093/nar/gkae399. Online ahead of print.

ABSTRACT

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.

PMID:38811035 | DOI:10.1093/nar/gkae399

Categories: Literature Watch

Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis

Wed, 2024-05-29 06:00

Chemosphere. 2024 May 27:142461. doi: 10.1016/j.chemosphere.2024.142461. Online ahead of print.

ABSTRACT

With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.

PMID:38810808 | DOI:10.1016/j.chemosphere.2024.142461

Categories: Literature Watch

Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate

Wed, 2024-05-29 06:00

Dev Cell. 2024 May 24:S1534-5807(24)00266-1. doi: 10.1016/j.devcel.2024.04.014. Online ahead of print.

ABSTRACT

Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.

PMID:38810654 | DOI:10.1016/j.devcel.2024.04.014

Categories: Literature Watch

Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties

Wed, 2024-05-29 06:00

Cell Rep. 2024 May 24:112787. doi: 10.1016/j.celrep.2023.112787. Online ahead of print.

ABSTRACT

Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.

PMID:38810650 | DOI:10.1016/j.celrep.2023.112787

Categories: Literature Watch

Meta-Analysis of Rice Phosphoproteomics Data to Understand Variation in Cell Signaling Across the Rice Pan-Genome

Wed, 2024-05-29 06:00

J Proteome Res. 2024 May 29. doi: 10.1021/acs.jproteome.4c00187. Online ahead of print.

ABSTRACT

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.

PMID:38810119 | DOI:10.1021/acs.jproteome.4c00187

Categories: Literature Watch

Presynaptic nanoscale components of retrograde synaptic signaling

Wed, 2024-05-29 06:00

Sci Adv. 2024 May 31;10(22):eado0077. doi: 10.1126/sciadv.ado0077. Epub 2024 May 29.

ABSTRACT

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.

PMID:38809980 | DOI:10.1126/sciadv.ado0077

Categories: Literature Watch

Pairtools: From sequencing data to chromosome contacts

Wed, 2024-05-29 06:00

PLoS Comput Biol. 2024 May 29;20(5):e1012164. doi: 10.1371/journal.pcbi.1012164. Online ahead of print.

ABSTRACT

The field of 3D genome organization produces large amounts of sequencing data from Hi-C and a rapidly-expanding set of other chromosome conformation protocols (3C+). Massive and heterogeneous 3C+ data require high-performance and flexible processing of sequenced reads into contact pairs. To meet these challenges, we present pairtools-a flexible suite of tools for contact extraction from sequencing data. Pairtools provides modular command-line interface (CLI) tools that can be flexibly chained into data processing pipelines. The core operations provided by pairtools are parsing of.sam alignments into Hi-C pairs, sorting and removal of PCR duplicates. In addition, pairtools provides auxiliary tools for building feature-rich 3C+ pipelines, including contact pair manipulation, filtration, and quality control. Benchmarking pairtools against popular 3C+ data pipelines shows advantages of pairtools for high-performance and flexible 3C+ analysis. Finally, pairtools provides protocol-specific tools for restriction-based protocols, haplotype-resolved contacts, and single-cell Hi-C. The combination of CLI tools and tight integration with Python data analysis libraries makes pairtools a versatile foundation for a broad range of 3C+ pipelines.

PMID:38809952 | DOI:10.1371/journal.pcbi.1012164

Categories: Literature Watch

Deciphering molecular bridges: Unveiling the interplay between metabolic syndrome and Alzheimer's disease through a systems biology approach and drug repurposing

Wed, 2024-05-29 06:00

PLoS One. 2024 May 29;19(5):e0304410. doi: 10.1371/journal.pone.0304410. eCollection 2024.

ABSTRACT

The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.

PMID:38809924 | DOI:10.1371/journal.pone.0304410

Categories: Literature Watch

Expression in poplar of dehydroshikimate dehydratase induces transcriptional and metabolic changes in the phenylpropanoid pathway

Wed, 2024-05-29 06:00

J Exp Bot. 2024 May 29:erae251. doi: 10.1093/jxb/erae251. Online ahead of print.

ABSTRACT

Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In-planta expression of a 3-dehydroshikimate dehydratase (QsuB) in poplar trees reduced lignin content and altered their monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we amassed fundamental knowledge on lignin-modified QsuB poplar using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibits the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. Changes affect predominantly the shikimate and phenylpropanoid pathways as wells as secondary cell wall metabolism, and result in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.

PMID:38809816 | DOI:10.1093/jxb/erae251

Categories: Literature Watch

Elevated PINK1/Parkin-Dependent Mitophagy and Boosted Mitochondrial Function Mediate Protection of HepG2 Cells from Excess Palmitic Acid by Hesperetin

Wed, 2024-05-29 06:00

J Agric Food Chem. 2024 May 29. doi: 10.1021/acs.jafc.3c09132. Online ahead of print.

ABSTRACT

Deregulation of mitochondrial functions in hepatocytes contributes to many liver diseases, such as nonalcoholic fatty liver disease (NAFLD). Lately, it was referred to as MAFLD (metabolism-associated fatty liver disease). Hesperetin (Hst), a bioactive flavonoid constituent of citrus fruit, has been proven to attenuate NAFLD. However, a potential connection between its preventive activities and the modulation of mitochondrial functions remains unclear. Here, our results showed that Hst alleviates palmitic acid (PA)-triggered NLRP3 inflammasome activation and cell death by inhibition of mitochondrial impairment in HepG2 cells. Hst reinstates fatty acid oxidation (FAO) rates measured by seahorse extracellular flux analyzer and intracellular acetyl-CoA levels as well as intracellular tricarboxylic acid cycle metabolites levels including NADH and FADH2 reduced by PA exposure. In addition, Hst protects HepG2 cells against PA-induced abnormal energetic profile, ATP generation reduction, overproduction of mitochondrial reactive oxygen species, and collapsed mitochondrial membrane potential. Furthermore, Hst improves the protein expression involved in PINK1/Parkin-mediated mitophagy. Our results demonstrate that it restores PA-impaired mitochondrial function and sustains cellular homeostasis due to the elevation of PINK1/Parkin-mediated mitophagy and the subsequent disposal of dysfunctional mitochondria. These results provide therapeutic potential for Hst utilization as an effective intervention against fatty liver disease.

PMID:38809522 | DOI:10.1021/acs.jafc.3c09132

Categories: Literature Watch

<em>Rhodobacteraceae</em> are key players in microbiome assembly of the diatom <em>Asterionellopsis glacialis</em>

Wed, 2024-05-29 06:00

Appl Environ Microbiol. 2024 May 29:e0057024. doi: 10.1128/aem.00570-24. Online ahead of print.

ABSTRACT

The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly.

IMPORTANCE: Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.

PMID:38809046 | DOI:10.1128/aem.00570-24

Categories: Literature Watch

Whole Genome Linkage and Association Analyses Identify DLG Associated Protein-1 as a Novel Positional and Biological Candidate Gene for Muscle Strength: The Long Life Family Study

Wed, 2024-05-29 06:00

J Gerontol A Biol Sci Med Sci. 2024 May 29:glae144. doi: 10.1093/gerona/glae144. Online ahead of print.

ABSTRACT

BACKGROUND: Grip strength is a robust indicator of overall health, is moderately heritable, and predicts longevity in older adults.

METHODS: Using genome-wide linkage analysis, we identified a novel locus on chromosome 18p (mega-basepair region: 3.4 - 4.0) linked to grip strength in 3755 individuals from 582 families aged 64 ± 12 years (range 30-110 years; 55% women). There were 26 families that contributed to the linkage peak (cumulative logarithm of the odds [LOD] score = 10.94), with six families (119 individuals) accounting for most of the linkage signal (LOD = 6.4). In these 6 families, using whole genome sequencing data, we performed association analyses between the 7312 single nucleotide (SNVs) and insertion deletion (INDELs) variants in the linkage region and grip strength. Models were adjusted for age, age2, sex, height, field center, and population substructure.

RESULTS: We found significant associations between genetic variants (8 SNVs and 4 INDELs, p<5*10-5) in the Disks Large-associated Protein 1 (DLGAP1) gene and grip strength. Haplotypes constructed using these variants explained up to 98.1% of the LOD score. Finally, RNAseq data showed that these variants were significantly associated with the expression of nearby Myosin Light Chain 12A (MYL12A), Structural Maintenance of Chromosomes Flexible Hinge Domain Containing 1 (SMCHD1), Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3) genes (p< .0004).

CONCLUSIONS: The DLGAP1 gene plays an important role in the post-synaptic density of neurons; thus, it is both a novel positional and biological candidate gene for follow-up studies aimed at uncovering genetic determinants of muscle strength.

PMID:38808484 | DOI:10.1093/gerona/glae144

Categories: Literature Watch

Pairing metagenomics and metaproteomics to characterize ecological niches and metabolic essentiality of gut microbiomes

Wed, 2024-05-29 06:00

ISME Commun. 2024 May 1;4(1):ycae063. doi: 10.1093/ismeco/ycae063. eCollection 2024 Jan.

ABSTRACT

The genome of a microorganism encodes its potential functions that can be implemented through expressed proteins. It remains elusive how a protein's selective expression depends on its metabolic essentiality to microbial growth or its ability to claim resources as ecological niches. To reveal a protein's metabolic or ecological role, we developed a computational pipeline, which pairs metagenomics and metaproteomics data to quantify each protein's gene-level and protein-level functional redundancy simultaneously. We first illustrated the idea behind the pipeline using simulated data of a consumer-resource model. We then validated it using real data from human and mouse gut microbiome samples. In particular, we analyzed ABC-type transporters and ribosomal proteins, confirming that the metabolic and ecological roles predicted by our pipeline agree well with prior knowledge. Finally, we performed in vitro cultures of a human gut microbiome sample and investigated how oversupplying various sugars involved in ecological niches influences the community structure and protein abundance. The presented results demonstrate the performance of our pipeline in identifying proteins' metabolic and ecological roles, as well as its potential to help us design nutrient interventions to modulate the human microbiome.

PMID:38808120 | PMC:PMC11131966 | DOI:10.1093/ismeco/ycae063

Categories: Literature Watch

Editorial: Mechanism and treatment for pancreatic cancer metastases

Wed, 2024-05-29 06:00

Front Oncol. 2024 May 14;14:1424817. doi: 10.3389/fonc.2024.1424817. eCollection 2024.

NO ABSTRACT

PMID:38807766 | PMC:PMC11130483 | DOI:10.3389/fonc.2024.1424817

Categories: Literature Watch

The puncture mechanics: an example from the bed bug <em>Cimex lectularius</em> showing traumatic insemination using the paramere

Wed, 2024-05-29 06:00

J R Soc Interface. 2024 May;21(214):20240108. doi: 10.1098/rsif.2024.0108. Epub 2024 May 29.

ABSTRACT

Cimicidae are well-known for traumatic insemination, and males pierce females with their parameres and transfer sperm through them. The shape of parameres is relatively stable in the family, but in some genera, the paramere is elongated, appearing less resistant against lateral deflection. To understand the mechanical limitations of the paramere, we studied its penetration mechanics of the common bed bug, Cimex lectularius. We examined the post-abdominal morphology, paramere geometry and material properties and conducted breaking stress experiments on the paramere under wet and dry conditions. Mechanical property gradients are present with the paramere tip as the stiffest region and the base as the most flexible one. These mechanical properties relate to the presence of Ca, Zn and Si. The basal wing-shaped structure is flexible, enabling it to interlock with the anal region during mating. The paramere is slightly twisted; the tip region is circular in cross-section, and the geometry of the rest is rather complex. In the mechanical tests, wet parameres mainly buckled, while dried parameres broke off. The level of structural failures depended on directions from which the compression forces were applied. Structural, material and mechanical strengthening mechanisms preventing the paramere from mechanical failure are discussed.

PMID:38807525 | DOI:10.1098/rsif.2024.0108

Categories: Literature Watch

Paradigm Shift: Major Role of Ion-Pairing-Dependent Size Exclusion Effects in Bottom-Up Proteomics Reversed-Phase Peptide Separations

Wed, 2024-05-29 06:00

Anal Chem. 2024 May 29. doi: 10.1021/acs.analchem.4c02035. Online ahead of print.

ABSTRACT

Can reversed-phase peptide retention be the same for C8 and C18 columns? or increase for otherwise identical columns with a smaller surface area? Can replacing trifluoroacetic acid (TFA) with formic acid (FA) improve the peak shape? According to our common understanding of peptide chromatography, absolutely not. Surprisingly, a thorough comparison of the peptide separation selectivity of 100 and 120 Å fully porous C18 sorbents to maximize the performance of our in-house proteomics LC-MS/MS setup revealed an unexpectedly higher peptide retentivity for a wider pore packing material, despite it having a smaller surface area. Concurrently, the observed increase in peptide retention─which drives variation in separation selectivity between 100 and 120 Å pore size materials─was more pronounced for smaller peptides. These findings contradict the central dogmas that underlie the development of all peptide RP-HPLC applications: (i) a larger surface area leads to higher retention and (ii) increasing the pore size should benefit the retention of larger analytes. Based on our intriguing findings, we compared reversed-phase high-performance liquid chromatography peptide retention for a total of 20 columns with pore sizes between 60 and 300 Å using FA- and TFA-based eluents. Our results unequivocally attest that the larger size of ion pairs in FA- vs TFA-based eluents leads to the observed impact on selectivity and peptide retention. For FA, peptide retention peaks at 200 Å pore size, compared to between 120 and 200 Å for TFA. However, the decrease in retention for narrow-pore particles is more profound in FA. Our findings suggest that common assumptions about analyte size and accessible surface area should be revisited for ion-pair RP separation of small peptides, typical for proteomic applications that are predominantly applying FA eluents. Hybrid silica-based materials with pore sizes of 130-200 Å should be specifically targeted for bottom-up proteomic applications to obtain both superior peak shape and peptide retentivity. This challenging task of attaining the best RPLC column for proteomics calls for closer collaboration between LC column manufacturers and proteomic LC specialists.

PMID:38807522 | DOI:10.1021/acs.analchem.4c02035

Categories: Literature Watch

Dynamics of the Herpes simplex virus DNA polymerase holoenzyme during DNA synthesis and proof-reading revealed by Cryo-EM

Tue, 2024-05-28 06:00

Nucleic Acids Res. 2024 May 29:gkae374. doi: 10.1093/nar/gkae374. Online ahead of print.

ABSTRACT

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.

PMID:38806233 | DOI:10.1093/nar/gkae374

Categories: Literature Watch

Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation

Tue, 2024-05-28 06:00

Bioinformatics. 2024 May 28:btae339. doi: 10.1093/bioinformatics/btae339. Online ahead of print.

ABSTRACT

MOTIVATION: Recent advances in spatial transcriptomics allow spatially resolved gene expression measurements with cellular or even sub-cellular resolution, directly characterizing the complex spatiotemporal gene expression landscape and cell-to-cell interactions in their native microenvironments. Due to technology limitations, most spatial transcriptomic technologies still yield incomplete expression measurements with excessive missing values. Therefore, gene imputation is critical to filling in missing data, enhancing resolution, and improving overall interpretability. However, existing methods either require additional matched single-cell RNA-seq data, which is rarely available, or ignore spatial proximity or expression similarity information.

RESULTS: To address these issues, we introduce Impeller, a path-based heterogeneous graph learning method for spatial transcriptomic data imputation. Impeller has two unique characteristics distinct from existing approaches. First, it builds a heterogeneous graph with two types of edges representing spatial proximity and expression similarity. Therefore, Impeller can simultaneously model smooth gene expression changes across spatial dimensions and capture similar gene expression signatures of faraway cells from the same type. Moreover, Impeller incorporates both short- and long-range cell-to-cell interactions (e.g., via paracrine and endocrine) by stacking multiple GNN layers. We use a learnable path operator in Impeller to avoid the over-smoothing issue of the traditional Laplacian matrices. Extensive experiments on diverse datasets from three popular platforms and two species demonstrate the superiority of Impeller over various state-of-the-art imputation methods.

AVAILABILITY AND IMPLEMENTATION: The code and preprocessed data used in this study are available at https://github.com/aicb-ZhangLabs/Impeller and https://zenodo.org/records/11212604.

SUPPLEMENTARY INFORMATION: Additional information is shown in the supplementary file.

PMID:38806165 | DOI:10.1093/bioinformatics/btae339

Categories: Literature Watch

Pages