Systems Biology
National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence
Radiographics. 2023 Dec;43(12):e230180. doi: 10.1148/rg.230180.
ABSTRACT
The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.
PMID:37999984 | DOI:10.1148/rg.230180
Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection
Cell Rep. 2023 Nov 23;42(12):113492. doi: 10.1016/j.celrep.2023.113492. Online ahead of print.
ABSTRACT
We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions.
PMID:37999978 | DOI:10.1016/j.celrep.2023.113492
Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry
Metabolomics. 2023 Nov 24;19(12):99. doi: 10.1007/s11306-023-02062-2.
ABSTRACT
BACKGROUND: Lactic Acid Bacteria (LAB) are commonly used as starter cultures, probiotics, to produce lactic acid and other useful compounds, and even as natural preservatives. For use in any food product however, LAB need to survive the various stresses they encounter in the environment and during processing. Understanding these mechanisms may enable direction of LAB biochemistry with potential beneficial impact for the food industry.
AIM OF REVIEW: To give an overview of the use of LAB in the food industry and then generate a deeper biochemical understanding of LAB stress response mechanisms via metabolomics, and methods of screening for robust strains of LAB.
KEY SCIENTIFIC CONCEPTS OF REVIEW: Uses of LAB in food products were assessed and factors which contribute to survival and tolerance in LAB investigated. Changes in the metabolic profiles of LAB exposed to stress were found to be associated with carbohydrates, amino acids and fatty acid levels and these changes were proposed to be a result of the bacteria trying to maintain cellular homeostasis in response to external conditions and minimise cellular damage from reactive oxygen species. This correlates with morphological analysis which shows that LAB can undergo cell elongation and shortening, as well as thinning and thickening of cell membranes, when exposed to stress. It is proposed that these innate strategies can be utilised to minimise negative effects caused by stress through selection of intrinsically robust strains, genetic modification and/or prior exposure to sublethal stress. This work demonstrates the utility of metabolomics to the food industry.
PMID:37999908 | DOI:10.1007/s11306-023-02062-2
Computational methods for processing and interpreting mass spectrometry-based metabolomics
Essays Biochem. 2023 Nov 24:EBC20230019. doi: 10.1042/EBC20230019. Online ahead of print.
ABSTRACT
Metabolomics has emerged as an indispensable tool for exploring complex biological questions, providing the ability to investigate a substantial portion of the metabolome. However, the vast complexity and structural diversity intrinsic to metabolites imposes a great challenge for data analysis and interpretation. Liquid chromatography mass spectrometry (LC-MS) stands out as a versatile technique offering extensive metabolite coverage. In this mini-review, we address some of the hurdles posed by the complex nature of LC-MS data, providing a brief overview of computational tools designed to help tackling these challenges. Our focus centers on two major steps that are essential to most metabolomics investigations: the translation of raw data into quantifiable features, and the extraction of structural insights from mass spectra to facilitate metabolite identification. By exploring current computational solutions, we aim at providing a critical overview of the capabilities and constraints of mass spectrometry-based metabolomics, while introduce some of the most recent trends in data processing and analysis within the field.
PMID:37999335 | DOI:10.1042/EBC20230019
Modeling Red Blood Cell Metabolism in the Omics Era
Metabolites. 2023 Nov 11;13(11):1145. doi: 10.3390/metabo13111145.
ABSTRACT
Red blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.
PMID:37999241 | DOI:10.3390/metabo13111145
Spread of <em>Pseudomonas aeruginosa</em> ST274 Clone in Different Niches: Resistome, Virulome, and Phylogenetic Relationship
Antibiotics (Basel). 2023 Oct 24;12(11):1561. doi: 10.3390/antibiotics12111561.
ABSTRACT
Pseudomonas aeruginosa ST274 is an international epidemic high-risk clone, mostly associated with hospital settings and appears to colonize cystic fibrosis (CF) patients worldwide. To understand the relevant mechanisms for its success, the biological and genomic characteristics of 11 ST274-P. aeruginosa strains from clinical and non-clinical origins were analyzed. The extensively drug-resistant (XDR/DTR), the non-susceptible to at least one agent (modR), and the lasR-truncated (by ISPsp7) strains showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity and low motility. Furthermore, the XDR/DTR and modR strains presented low pigment production and biofilm formation, which were very high in the lasR-truncated strain. Their whole genome sequences were compared with other 14 ST274-P. aeruginosa genomes available in the NCBI database, and certain associations have been primarily detected: blaOXA-486 and blaPDC-24 genes, serotype O:3, exoS+/exoU- genotype, group V of type IV pili, and pyoverdine locus class II. Other general molecular markers highlight the absence of vqsM and pldA/tleS genes and the presence of the same mutational pattern in genes involving two-component sensor-regulator systems PmrAB and CreBD, exotoxin A, quorum-sensing RhlI, beta-lactamase expression regulator AmpD, PBP1A, or FusA2 elongation factor G. The proportionated ST274-P. aeruginosa results could serve as the basis for more specific studies focused on better antibiotic stewardship and new therapeutic developments.
PMID:37998763 | DOI:10.3390/antibiotics12111561
Cloning, Expression and Functional Characterization of a Novel α-Humulene Synthase, Responsible for the Formation of Sesquiterpene in Agarwood Originating from <em>Aquilaria malaccensis</em>
Curr Issues Mol Biol. 2023 Nov 10;45(11):8989-9002. doi: 10.3390/cimb45110564.
ABSTRACT
This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
PMID:37998741 | DOI:10.3390/cimb45110564
Plant Metabolomics: Current Initiatives and Future Prospects
Curr Issues Mol Biol. 2023 Nov 8;45(11):8894-8906. doi: 10.3390/cimb45110558.
ABSTRACT
Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding of the functional roles of specific metabolites in plants' physiology, development, and responses to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific traits or functions. Plant metabolic networks and pathways can be better understood with the help of metabolomics. Researchers can determine how plants react to environmental cues or genetic modifications by examining how metabolite profiles change under various crop stages. Metabolomics plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective of plant biology. This systems biology approach enables researchers to understand the complex interactions within organisms.
PMID:37998735 | DOI:10.3390/cimb45110558
Assessment of Cross-Reactivity of Chimeric <em>Trypanosoma cruzi</em> Antigens with <em>Crithidia</em> sp. LVH-60A: Implications for Accurate Diagnostics
Diagnostics (Basel). 2023 Nov 17;13(22):3470. doi: 10.3390/diagnostics13223470.
ABSTRACT
This study focuses on developing accurate immunoassays for diagnosing Chagas disease (CD), a challenging task due to antigenic similarities between Trypanosoma cruzi and other parasites, leading to cross-reactivity. To address this challenge, chimeric recombinant T. cruzi antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) were synthesized to enhance specificity and reduce cross-reactivity in tests. While these antigens showed minimal cross-reactivity with leishmaniasis, their performance with other trypanosomatid infections was unclear. This study aimed to assess the diagnostic potential of these IBMP antigens for detecting CD in patients with Crithidia sp. LVH-60A, a parasite linked to visceral leishmaniasis-like symptoms in Brazil. This study involved seven Crithidia sp. LVH-60A patients and three Leishmania infantum patients. The results indicated that these IBMP antigens displayed 100% sensitivity, with specificity ranging from 87.5% to 100%, and accuracy values between 90% and 100%. No cross-reactivity was observed with Crithidia sp. LVH-60A, and only one L. infantum-positive sample showed limited cross-reactivity with IBMP-8.1. This study suggests that IBMP antigens offer promising diagnostic performance, with minimal cross-reactivity in regions where T. cruzi and other trypanosomatids are prevalent. However, further research with a larger number of Crithidia sp. LVH-60A-positive samples is needed to comprehensively evaluate antigen cross-reactivity.
PMID:37998606 | DOI:10.3390/diagnostics13223470
Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level
Cells. 2023 Nov 20;12(22):2660. doi: 10.3390/cells12222660.
ABSTRACT
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
PMID:37998395 | DOI:10.3390/cells12222660
ABA guides stomatal proliferation and patterning through the EPF-SPCH signaling pathway in Arabidopsis thaliana
Development. 2023 Nov 23:dev.201258. doi: 10.1242/dev.201258. Online ahead of print.
ABSTRACT
Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone, abscisic acid (ABA), induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA level, xer-1, xer-2, and aba2-2 developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displays stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued xer and aba2-2 increased stomatal density and spacing defects, suggesting basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.
PMID:37997741 | DOI:10.1242/dev.201258
Multifunctional Cationic Hyperbranched Polyaminoglycosides that Target Multiple Mediators for Severe Abdominal Trauma Management
Adv Sci (Weinh). 2023 Nov 23:e2305273. doi: 10.1002/advs.202305273. Online ahead of print.
ABSTRACT
Trauma and its associated complications, including dysregulated inflammatory responses, severe infection, and disseminated intravascular coagulation (DIC), continue to pose lethal threats worldwide. Following injury, cell-free nucleic acids (cfNAs), categorized as damage-associated molecular patterns (DAMPs), are released from dying or dead cells, triggering local and systemic inflammatory responses and coagulation abnormalities that worsen disease progression. Harnessing cfNA scavenging strategies with biomaterials has emerged as a promising approach for treating posttrauma systemic inflammation. In this study, the effectiveness of cationic hyperbranched polyaminoglycosides derived from tobramycin (HPT) and disulfide-included HPT (ss-HPT) in scavenging cfNAs to mitigate posttrauma inflammation and hypercoagulation is investigated. Both cationic polymers demonstrate the ability to suppress DAMP-induced toll-like receptor (TLR) activation, inflammatory cytokine secretion, and hypercoagulation by efficiently scavenging cfNAs. Additionally, HPT and ss-HPT exhibit potent antibacterial efficacy attributed to the presence of tobramycin in their chemical composition. Furthermore, HPT and ss-HPT exhibit favorable modulatory effects on inflammation and therapeutic outcomes in a cecal ligation puncture (CLP) mouse abdominal trauma model. Notably, in vivo studies reveal that ss-HPT displayed high accumulation and retention in injured organs of traumatized mice while maintaining a higher biodegradation rate in healthy mice, contrasting with findings for HPT. Thus, functionalized ss-HPT, a bioreducible polyaminoglycoside, holds promise as an effective option to enhance therapeutic outcomes for trauma patients by alleviating posttrauma inflammation and coagulation complications.
PMID:37997512 | DOI:10.1002/advs.202305273
Monitoring Phenotype Heterogeneity at the Single-Cell Level within <em>Bacillus</em> Populations Producing Poly-3-hydroxybutyrate by Label-Free Super-resolution Infrared Imaging
Anal Chem. 2023 Nov 23. doi: 10.1021/acs.analchem.3c03595. Online ahead of print.
ABSTRACT
Phenotypic heterogeneity is commonly found among bacterial cells within microbial populations due to intrinsic factors as well as equipping the organisms to respond to external perturbations. The emergence of phenotypic heterogeneity in bacterial populations, particularly in the context of using these bacteria as microbial cell factories, is a major concern for industrial bioprocessing applications. This is due to the potential impact on overall productivity by allowing the growth of subpopulations consisting of inefficient producer cells. Monitoring the spread of phenotypes across bacterial cells within the same population at the single-cell level is key to the development of robust, high-yield bioprocesses. Here, we discuss the novel development of optical photothermal infrared (O-PTIR) spectroscopy to probe phenotypic heterogeneity within Bacillus strains by monitoring the production of the bioplastic poly-3-hydroxybutyrate (PHB) at the single-cell level. Measurements obtained on single-point and in imaging mode show significant variability in the PHB content within bacterial cells, ranging from whether or not a cell produces PHB to variations in the intragranular biochemistry of PHB within bacterial cells. Our results show the ability of O-PTIR spectroscopy to probe PHB production at the single-cell level in a rapid, label-free, and semiquantitative manner. These findings highlight the potential of O-PTIR spectroscopy in single-cell microbial metabolomics as a whole-organism fingerprinting tool that can be used to monitor the dynamic of bacterial populations as well as for understanding their mechanisms for dealing with environmental stress, which is crucial for metabolic engineering research.
PMID:37997371 | DOI:10.1021/acs.analchem.3c03595
Multi-omics analysis reveals the molecular response to heat stress in a "red tide" dinoflagellate
Genome Biol. 2023 Nov 23;24(1):265. doi: 10.1186/s13059-023-03107-4.
ABSTRACT
BACKGROUND: "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes.
RESULTS: We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate.
CONCLUSIONS: Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.
PMID:37996937 | DOI:10.1186/s13059-023-03107-4
Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform
Plant Methods. 2023 Nov 23;19(1):132. doi: 10.1186/s13007-023-01102-1.
ABSTRACT
BACKGROUND: Thermography is a popular tool to assess plant water-use behavior, as plant temperature is influenced by transpiration rate, and is commonly used in field experiments to detect plant water deficit. Its application in indoor automated phenotyping platforms is still limited and mainly focuses on differences in plant temperature between genotypes or treatments, instead of estimating stomatal conductance or transpiration rate. In this study, the transferability of commonly used thermography analysis protocols from the field to greenhouse phenotyping platforms was evaluated. In addition, the added value of combining thermal infrared (TIR) with hyperspectral imaging to monitor drought effects on plant transpiration rate (E) was evaluated.
RESULTS: The sensitivity of commonly used TIR indices to detect drought-induced and genotypic differences in water status was investigated in eight maize inbred lines in the automated phenotyping platform PHENOVISION. Indices that normalized plant temperature for vapor pressure deficit and/or air temperature at the time of imaging were most sensitive to drought and could detect genotypic differences in the plants' water-use behavior. However, these indices were not strongly correlated to stomatal conductance and E. The canopy temperature depression index, the crop water stress index and the simplified stomatal conductance index were more suitable to monitor these traits, and were consequently used to develop empirical E prediction models by combining them with hyperspectral indices and/or environmental variables. Different modeling strategies were evaluated, including single index-based, machine learning and mechanistic models. Model comparison showed that combining multiple TIR indices in a random forest model can improve E prediction accuracy, and that the contribution of the hyperspectral data is limited when multiple indices are used. However, the empirical models trained on one genotype were not transferable to all eight inbred lines.
CONCLUSION: Overall, this study demonstrates that existing TIR indices can be used to monitor drought stress and develop E prediction models in an indoor setup, as long as the indices normalize plant temperature for ambient air temperature or relative humidity.
PMID:37996870 | DOI:10.1186/s13007-023-01102-1
Uncovering developmental time and tempo using deep learning
Nat Methods. 2023 Nov 23. doi: 10.1038/s41592-023-02083-8. Online ahead of print.
ABSTRACT
During animal development, embryos undergo complex morphological changes over time. Differences in developmental tempo between species are emerging as principal drivers of evolutionary novelty, but accurate description of these processes is very challenging. To address this challenge, we present here an automated and unbiased deep learning approach to analyze the similarity between embryos of different timepoints. Calculation of similarities across stages resulted in complex phenotypic fingerprints, which carry characteristic information about developmental time and tempo. Using this approach, we were able to accurately stage embryos, quantitatively determine temperature-dependent developmental tempo, detect naturally occurring and induced changes in the developmental progression of individual embryos, and derive staging atlases for several species de novo in an unsupervised manner. Our approach allows us to quantify developmental time and tempo objectively and provides a standardized way to analyze early embryogenesis.
PMID:37996754 | DOI:10.1038/s41592-023-02083-8
Reshaping the Syncytial Drosophila Embryo with Cortical Actin Networks: Four Main Steps of Early Development
Results Probl Cell Differ. 2024;71:67-90. doi: 10.1007/978-3-031-37936-9_4.
ABSTRACT
Drosophila development begins as a syncytium. The large size of the one-cell embryo makes it ideal for studying the structure, regulation, and effects of the cortical actin cytoskeleton. We review four main steps of early development that depend on the actin cortex. At each step, dynamic remodelling of the cortex has specific effects on nuclei within the syncytium. During axial expansion, a cortical actomyosin network assembles and disassembles with the cell cycle, generating cytoplasmic flows that evenly distribute nuclei along the ovoid cell. When nuclei move to the cell periphery, they seed Arp2/3-based actin caps which grow into an array of dome-like compartments that house the nuclei as they divide at the cell cortex. To separate germline nuclei from the soma, posterior germ plasm induces full cleavage of mono-nucleated primordial germ cells from the syncytium. Finally, zygotic gene expression triggers formation of the blastoderm epithelium via cellularization and simultaneous division of ~6000 mono-nucleated cells from a single internal yolk cell. During these steps, the cortex is regulated in space and time, gains domain and sub-domain structure, and undergoes mesoscale interactions that lay a structural foundation of animal development.
PMID:37996673 | DOI:10.1007/978-3-031-37936-9_4
Metastases and treatment-resistant lineages in patient-derived cancer cells of colorectal cancer
Commun Biol. 2023 Nov 24;6(1):1191. doi: 10.1038/s42003-023-05562-y.
ABSTRACT
Circulating tumor cells (CTCs) play an important role in metastasis and recurrence. However, which cells comprise the complex tumor lineages in recurrence and are key in metastasis are unknown in colorectal cancer (CRC). CRC with high expression of POU5F1 has a poor prognosis with a high incidence of liver metastatic recurrence. We aim to reveal the key cells promoting metastasis and identify treatment-resistant lineages with established EGFP-expressing organoids in two-dimensional culture (2DOs) under the POU5F1 promotor. POU5F1-expressing cells are highly present in relapsed clinical patients' blood as CTCs. Sorted POU5F1-expressing cells from 2DOs have cancer stem cell abilities and abundantly form liver metastases in vivo. Single-cell RNA sequencing of 2DOs identifies heterogeneous populations derived from POU5F1-expressing cells and the Wnt signaling pathway is enriched in POU5F1-expressing cells. Characteristic high expression of CTLA4 is observed in POU5F1-expressing cells and immunocytochemistry confirms the co-expression of POU5F1 and CTLA4. Demethylation in some CpG islands at the transcriptional start sites of POU5F1 and CTLA4 is observed. The Wnt/β-catenin pathway inhibitor, XAV939, prevents the adhesion and survival of POU5F1-expressing cells in vitro. Early administration of XAV939 also completely inhibits liver metastasis induced by POU5F1-positive cells.
PMID:37996567 | DOI:10.1038/s42003-023-05562-y
Skull bone marrow channels as immune gateways to the central nervous system
Nat Neurosci. 2023 Nov 23. doi: 10.1038/s41593-023-01487-1. Online ahead of print.
ABSTRACT
Decades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called 'skull channels') connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS. We explore the role of this hematopoietic output on CNS health, focusing on the supply of immune cells during health and disease.
PMID:37996526 | DOI:10.1038/s41593-023-01487-1
Evidence for involvement of the alcohol consumption WDPCP gene in lipid metabolism, and liver cirrhosis
Sci Rep. 2023 Nov 23;13(1):20616. doi: 10.1038/s41598-023-47371-7.
ABSTRACT
Biological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi). In humans, association analysis, pathway analysis, and Mendelian randomization analysis were performed to identify metabolic changes due to alcohol consumption. In C. elegans, we found a reduction in locomotion rate after exposure to ethanol for RNAi knockdown of ACTR1B and MAPT. In Drosophila, we observed (1) a change in sedative effect of ethanol for RNAi knockdown of WDPCP, TENM2, GPN1, ARPC1B, and SCN8A, (2) a reduction in ethanol consumption for RNAi knockdown of TENM2, (3) a reduction in triradylglycerols (TAG) levels for RNAi knockdown of WDPCP, TENM2, and GPN1. In human, we observed (1) a link between alcohol consumption and several metabolites including TAG, (2) an enrichment of the candidate (alcohol-associated) metabolites within the linoleic acid (LNA) and alpha-linolenic acid (ALA) metabolism pathways, (3) a causal link between gene expression of WDPCP to liver fibrosis and liver cirrhosis. Our results imply that WDPCP might be involved in ALD.
PMID:37996473 | DOI:10.1038/s41598-023-47371-7