Systems Biology
Antiepileptogenic and neuroprotective effect of mefloquine after experimental status epilepticus
Epilepsy Res. 2023 Nov 8;198:107257. doi: 10.1016/j.eplepsyres.2023.107257. Online ahead of print.
ABSTRACT
Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.
PMID:37989006 | DOI:10.1016/j.eplepsyres.2023.107257
Liposomes Containing Zinc-Based Chemotherapeutic Drug Block Proliferation and Trigger Apoptosis in Breast Cancer Cells
ACS Appl Bio Mater. 2023 Nov 21. doi: 10.1021/acsabm.3c00587. Online ahead of print.
ABSTRACT
Platinum-based chemotherapeutic drugs are effective in killing malignant cells but often trigger drug resistance or off-target side effects. Unlike platinum, zinc is used as an endogenous cofactor for several cellular enzymes and may, thus, display increased biocompatibility. In this present study, we have rationally designed and synthesized two substituted phenanthro[9,10-d]imidazole-based ligands L1 and L2 with pyridine and quinoline substitution at the 2 position and their corresponding Zn(II) complexes; (L1)2Zn and (L2)2Zn, which are characterized by standard analytical and spectroscopic methods. (L2)2Zn, but not (L1)2Zn has intrinsic fluorescence, indicating its potential utility in imaging applications. To facilitate cellular uptake, we generated liposomal formations with a phospholipid DMPC (1,2-Dimyristoyl-sn-glycero-3-phosphocholine) through molecular self-assembly. These liposomal formulations Lip-(L1)2Zn and Lip-(L2)2Zn were able to enter breast cancer cells, induce DNA fragmentation, arrest the cell cycle at the G0/G1 phase, decrease proliferation, and promote apoptosis by activating the DNA damage response. Importantly, both Lip-(L1)2Zn and Lip-(L2)2Zn decreased the size of breast cancer cell-based spheroids, indicating they may be capable of suppressing tumor growth. Our work represents an important proof-of-concept exercise demonstrating that successful liposomal formation of phenanthro[9,10-d]imidazole-based Zn(II) complexes with inherent optical properties have great promise for the development of imaging probes and efficient anticancer drugs.
PMID:37988654 | DOI:10.1021/acsabm.3c00587
Pancreatic cancer symptom trajectories from Danish registry data and free text in electronic health records
Elife. 2023 Nov 21;12:e84919. doi: 10.7554/eLife.84919.
ABSTRACT
Pancreatic cancer is one of the deadliest cancer types with poor treatment options. Better detection of early symptoms and relevant disease correlations could improve pancreatic cancer prognosis. In this retrospective study, we used symptom and disease codes (ICD-10) from the Danish National Patient Registry (NPR) encompassing 6.9 million patients from 1994 to 2018,, of whom 23,592 were diagnosed with pancreatic cancer. The Danish cancer registry included 18,523 of these patients. To complement and compare the registry diagnosis codes with deeper clinical data, we used a text mining approach to extract symptoms from free text clinical notes in electronic health records (3078 pancreatic cancer patients and 30,780 controls). We used both data sources to generate and compare symptom disease trajectories to uncover temporal patterns of symptoms prior to pancreatic cancer diagnosis for the same patients. We show that the text mining of the clinical notes was able to complement the registry-based symptoms by capturing more symptoms prior to pancreatic cancer diagnosis. For example, 'Blood pressure reading without diagnosis', 'Abnormalities of heartbeat', and 'Intestinal obstruction' were not found for the registry-based analysis. Chaining symptoms together in trajectories identified two groups of patients with lower median survival (<90 days) following the trajectories 'Cough→Jaundice→Intestinal obstruction' and 'Pain→Jaundice→Abnormal results of function studies'. These results provide a comprehensive comparison of the two types of pancreatic cancer symptom trajectories, which in combination can leverage the full potential of the health data and ultimately provide a fuller picture for detection of early risk factors for pancreatic cancer.
PMID:37988407 | DOI:10.7554/eLife.84919
Protein kinase PfPK2 mediated signalling is critical for host erythrocyte invasion by malaria parasite
PLoS Pathog. 2023 Nov 21;19(11):e1011770. doi: 10.1371/journal.ppat.1011770. eCollection 2023 Nov.
ABSTRACT
Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.
PMID:37988347 | DOI:10.1371/journal.ppat.1011770
IDESS: a toolbox for identification and automated design of stochastic gene circuits
Bioinformatics. 2023 Nov 21:btad682. doi: 10.1093/bioinformatics/btad682. Online ahead of print.
ABSTRACT
MOTIVATION: One of the main causes hampering predictability during the model identification and automated design of gene circuits in synthetic biology is the effect of molecular noise. Stochasticity may significantly impact the dynamics and function of gene circuits, specially in bacteria and yeast due to low mRNA copy numbers. Standard stochastic simulation methods are too computationally costly in realistic scenarios to be applied to optimization-based design or parameter estimation.
RESULTS: In this work, we present IDESS (Identification and automated DEsign of Stochastic gene circuitS), a software toolbox for optimization-based design and model identification of gene regulatory circuits in the stochastic regime. This software incorporates an efficient approximation of the Chemical Master Equation as well as a stochastic simulation algorithm -both with GPU and CPU implementations- combined with global optimization algorithms capable of solving Mixed Integer Nonlinear Programming (MINLP) problems. The toolbox efficiently addresses two types of problems relevant in systems and synthetic biology: the automated design of stochastic synthetic gene circuits, and the parameter estimation for model identification of stochastic gene regulatory networks.
AVAILABILITY: IDESS runs under the MATLAB environment and it is available under GPLv3 license at https://doi.org/10.5281/zenodo.7788692.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:37988145 | DOI:10.1093/bioinformatics/btad682
Role of the kisspeptin-KISS1R axis in the pathogenesis of chronic kidney disease and uremic cardiomyopathy
Geroscience. 2023 Nov 21. doi: 10.1007/s11357-023-01017-8. Online ahead of print.
ABSTRACT
The prevalence of chronic kidney disease (CKD) is increasing globally, especially in elderly patients. Uremic cardiomyopathy is a common cardiovascular complication of CKD, characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and fibrosis. Kisspeptins and their receptor, KISS1R, exert a pivotal influence on kidney pathophysiology and modulate age-related pathologies across various organ systems. KISS1R agonists, including kisspeptin-13 (KP-13), hold promise as novel therapeutic agents within age-related biological processes and kidney-related disorders. Our investigation aimed to elucidate the impact of KP-13 on the trajectory of CKD and uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (I) sham-operated, (II) 5/6 nephrectomy-induced CKD, (III) CKD subjected to a low dose of KP-13 (intraperitoneal 13 µg/day), and (IV) CKD treated with a higher KP-13 dose (intraperitoneal 26 µg/day). Treatments were administered daily from week 3 for 10 days. After 13 weeks, KP-13 increased systemic blood pressure, accentuating diastolic dysfunction's echocardiographic indicators and intensifying CKD-associated markers such as serum urea levels, glomerular hypertrophy, and tubular dilation. Notably, KP-13 did not exacerbate circulatory uremic toxin levels, renal inflammation, or fibrosis markers. In contrast, the higher KP-13 dose correlated with reduced posterior and anterior wall thickness, coupled with diminished cardiomyocyte cross-sectional areas and concurrent elevation of inflammatory (Il6, Tnf), fibrosis (Col1), and apoptosis markers (Bax/Bcl2) relative to the CKD group. In summary, KP-13's influence on CKD and uremic cardiomyopathy encompassed heightened blood pressure and potentially activated inflammatory and apoptotic pathways in the left ventricle.
PMID:37987885 | DOI:10.1007/s11357-023-01017-8
3'-tRF-Cys<sup>GCA</sup> overexpression in HEK-293 cells alters the global expression profile and modulates cellular processes and pathways
Funct Integr Genomics. 2023 Nov 21;23(4):341. doi: 10.1007/s10142-023-01272-0.
ABSTRACT
tRNA fragments (tRFs) are small non-coding RNAs generated through specific cleavage of tRNAs and involved in various biological processes. Among the different types of tRFs, the 3'-tRFs have attracted scientific interest due to their regulatory role in gene expression. In this study, we investigated the role of 3'-tRF-CysGCA, a tRF deriving from cleavage in the T-loop of tRNACysGCA, in the regulation of gene expression in HEK-293 cells. Previous studies have shown that 3'-tRF-CysGCA is incorporated into the RISC complex and interacts with Argonaute proteins, suggesting its involvement in the regulation of gene expression. However, the general role and effect of the deregulation of 3'-tRF-CysGCA levels in human cells have not been investigated so far. To fill this gap, we stably overexpressed 3'-tRF-CysGCA in HEK-293 cells and performed transcriptomic and proteomic analyses. Moreover, we validated the interaction of this tRF with putative targets, the levels of which were found to be affected by 3'-tRF-CysGCA overexpression. Lastly, we investigated the implication of 3'-tRF-CysGCA in various pathways using extensive bioinformatics analysis. Our results indicate that 3'-tRF-CysGCA overexpression led to changes in the global gene expression profile of HEK-293 cells and that multiple cellular pathways were affected by the deregulation of the levels of this tRF. Additionally, we demonstrated that 3'-tRF-CysGCA directly interacts with thymopoietin (TMPO) transcript variant 1 (also known as LAP2α), leading to modulation of its levels. In conclusion, our findings suggest that 3'-tRF-CysGCA plays a significant role in gene expression regulation and highlight the importance of this tRF in cellular processes.
PMID:37987851 | DOI:10.1007/s10142-023-01272-0
NBSTRN Tools to Advance Newborn Screening Research and Support Newborn Screening Stakeholders
Int J Neonatal Screen. 2023 Oct 30;9(4):63. doi: 10.3390/ijns9040063.
ABSTRACT
Rapid advances in the screening, diagnosis, and treatment of genetic disorders have increased the number of conditions that can be detected through universal newborn screening (NBS). However, the addition of conditions to the Recommended Uniform Screening Panel (RUSP) and the implementation of nationwide screening has been a slow process taking several years to accomplish for individual conditions. Here, we describe web-based tools and resources developed and implemented by the newborn screening translational research network (NBSTRN) to advance newborn screening research and support NBS stakeholders worldwide. The NBSTRN's tools include the Longitudinal Pediatric Data Resource (LPDR), the NBS Condition Resource (NBS-CR), the NBS Virtual Repository (NBS-VR), and the Ethical, Legal, and Social Issues (ELSI) Advantage. Research programs, including the Inborn Errors of Metabolism Information System (IBEM-IS), BabySeq, EarlyCheck, and Family Narratives Use Cases, have utilized NBSTRN's tools and, in turn, contributed research data to further expand and refine these resources. Additionally, we discuss ongoing tool development to facilitate the expansion of genetic disease screening in increasingly diverse populations. In conclusion, NBSTRN's tools and resources provide a trusted platform to enable NBS stakeholders to advance NBS research and improve clinical care for patients and their families.
PMID:37987476 | DOI:10.3390/ijns9040063
Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer
Cancer Med. 2023 Nov 21. doi: 10.1002/cam4.6719. Online ahead of print.
ABSTRACT
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
PMID:37987212 | DOI:10.1002/cam4.6719
Identifying individualized prognostic signature and unraveling the molecular mechanism of recurrence in early-onset colorectal cancer
Eur J Med Res. 2023 Nov 20;28(1):533. doi: 10.1186/s40001-023-01491-y.
ABSTRACT
BACKGROUND: The incidence and mortality of early-onset colorectal cancer (EOCRC; < 50 years old) is increasing worldwide, with a high recurrence rate. The inherent heterogeneity of EOCRC makes its treatment challenging. Hence, to further understand the biology and reveal the molecular mechanisms of EOCRC, a recurrence risk signature is needed to guide clinical management.
METHODS: Based on the relative expression orderings (REOs) of genes in each sample, a prognostic signature was developed and validated utilizing multiple independent datasets. The underlying molecular mechanisms between distinct prognostic groups were explored via integrative analysis of multi-omics data.
RESULTS: The prognostic signature consisting of 6 gene pairs (6-GPS) could predict the recurrence risk for EOCRC at the individual level. High-risk EOCRC classified by 6-GPS showed a poor prognosis but a good response to adjuvant chemotherapy. Moreover, high-risk EOCRC was characterized by epithelial-mesenchymal transition (EMT) and enriched angiogenesis, and had higher mutation burden, immune cell infiltration, and PD-1/PD-L1 expression. Furthermore, we identified four genes associated with relapse-free survival in EOCRC, including SERPINE1, PECAM1, CDH1, and ANXA1. They were consistently differentially expressed at the transcriptome and proteome levels between high-risk and low-risk EOCRCs. They were also involved in regulating cancer progression and immune microenvironment in EOCRC. Notably, the expression of SERPINE1 and ANXA1 positively correlated with M2-like macrophage infiltration.
CONCLUSION: Our results indicate that 6-GPS can robustly predict the recurrence risk of EOCRC, and that SERPINE1, PECAM1, CDH1, and ANXA1 may serve as potential therapeutic targets. This study provides valuable information for the precision treatment of EOCRC.
PMID:37986009 | DOI:10.1186/s40001-023-01491-y
Omics data integration suggests a potential idiopathic Parkinson's disease signature
Commun Biol. 2023 Nov 20;6(1):1179. doi: 10.1038/s42003-023-05548-w.
ABSTRACT
The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.
PMID:37985891 | DOI:10.1038/s42003-023-05548-w
Spatial metatranscriptomics resolves host-bacteria-fungi interactomes
Nat Biotechnol. 2023 Nov 20. doi: 10.1038/s41587-023-01979-2. Online ahead of print.
ABSTRACT
The interactions of microorganisms among themselves and with their multicellular host take place at the microscale, forming complex networks and spatial patterns. Existing technology does not allow the simultaneous investigation of spatial interactions between a host and the multitude of its colonizing microorganisms, which limits our understanding of host-microorganism interactions within a plant or animal tissue. Here we present spatial metatranscriptomics (SmT), a sequencing-based approach that leverages 16S/18S/ITS/poly-d(T) multimodal arrays for simultaneous host transcriptome- and microbiome-wide characterization of tissues at 55-µm resolution. We showcase SmT in outdoor-grown Arabidopsis thaliana leaves as a model system, and find tissue-scale bacterial and fungal hotspots. By network analysis, we study inter- and intrakingdom spatial interactions among microorganisms, as well as the host response to microbial hotspots. SmT provides an approach for answering fundamental questions on host-microbiome interplay.
PMID:37985875 | DOI:10.1038/s41587-023-01979-2
Quick tips for interpreting cell death experiments
Nat Cell Biol. 2023 Nov 20. doi: 10.1038/s41556-023-01288-5. Online ahead of print.
NO ABSTRACT
PMID:37985871 | DOI:10.1038/s41556-023-01288-5
PanomiR: a systems biology framework for analysis of multi-pathway targeting by miRNAs
Brief Bioinform. 2023 Sep 22;24(6):bbad418. doi: 10.1093/bib/bbad418.
ABSTRACT
Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR integrates gene expression, mRNA-miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated functional programs. It is available at https://bioconductor.org/packages/PanomiR.
PMID:37985452 | DOI:10.1093/bib/bbad418
A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis
New Phytol. 2023 Nov 20. doi: 10.1111/nph.19394. Online ahead of print.
ABSTRACT
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
PMID:37985403 | DOI:10.1111/nph.19394
Fermentation characteristics and prebiotic potential of enzymatically synthesized butyryl-fructooligosaccharides
Carbohydr Polym. 2024 Jan 15;324:121486. doi: 10.1016/j.carbpol.2023.121486. Epub 2023 Oct 14.
ABSTRACT
Existing prebiotics, such as fructo-oligosaccharides (FOSs), can be modified to enhance their functionality or introduce additional functionalities. This study aimed to investigate the fermentation characteristics and prebiotic potential of enzymatically synthesized butyryl-FOSs. The esters were successfully synthesized through the reaction of butyric acid and FOSs using both chemical and enzymatic methods, denoted as A-FOSs and B-FOSs, respectively, for comparative analysis. The esterification degree of each component in A-FOSs was significantly higher than that of B-FOSs. Subsequently, the obtained esters were characterized for their fermentation properties, degradation mode and potential prebiotic effects using an in vitro simulated colonic fermentation model. Enzymes of human gut microbiota were found to preferentially cleave the glycosidic bond to the unit without butyryl group and release the sugars for utilization. A significant increase in butyric acid levels was observed during fermentation after the supplementation of B-FOSs. The 16S rRNA gene sequencing, absolute quantification of microbiota, and selected probiotic strains culture showed that B-FOSs supplementation promoted the growth of beneficial bacteria while reducing harmful ones. These results suggest that B-FOSs hold promise as novel prebiotics, possessing dual functions of modulating gut microbiota and delivering butyric acid to the colon in a targeted manner, ultimately contributing to improved gut health.
PMID:37985044 | DOI:10.1016/j.carbpol.2023.121486
Escaping malnutrition by shifting habitats: a driver of three-spined stickleback invasion in Lake Constance
J Fish Biol. 2023 Nov 20. doi: 10.1111/jfb.15622. Online ahead of print.
ABSTRACT
Fatty acids, and especially long-chain polyunsaturated acids, are biologically important components in the metabolism of vertebrates including fish. So-called essential fatty acids are those which in a given animal cannot be synthesised or modified from precursors and must therefore be acquired via the diet. Because EFA are often unevenly distributed in nature, this requirement may drive species to make behavioural or ecological adaptations in order to avoid malnutrition. This is especially true for fish like the three-spined stickleback of Upper Lake Constance (ULC), whose recent marine ancestors evolved with access to EFA rich prey (Gasterosteus aculeatus), but which found themselves in an EFA-deficient habitat. An unexpected and unprecedented ecological shift in the ULC stickleback population from the littoral to pelagic zone in 2012 might be linked to EFA availability, triggering ecological release and enabling them to build a hyperabundant population while displacing the former keystone species, the pelagic whitefish Coregonus wartmanni. To test this hypothesis, sticklebacks from the littoral and pelagic zones of ULC were sampled seasonally in two consecutive years, and their stomach contents and fatty acid profiles were analysed. Pelagic sticklebacks were found to possess significantly higher values of an important EFA, docosahexaenoic acid (DHA), especially during autumn. Evaluation of the DHA supply suggests that sticklebacks feeding in the littoral zone during autumn could not meet their DHA requirement, whereas DHA availability in the pelagic zone was surplus to demand. During autumn, pelagic sticklebacks consumed large amounts of DHA-rich prey, i.e. copepods, whereas littoral sticklebacks relied mainly on mostly cladocerans, which provide much lower quantities of DHA. Access to pelagic zooplankton in 2012 was possibly facilitated by low densities of previously dominant zooplanktivorous whitefish. The present study offers a convincing physiological explanation for the observed expansion of invasive sticklebacks from the littoral to the pelagic zone of Lake Constance, contributing to a phase shift with severe consequences for fisheries. This article is protected by copyright. All rights reserved.
PMID:37984830 | DOI:10.1111/jfb.15622
A 19-color single-tube full spectrum flow cytometry assay for the detection of measurable residual disease in acute myeloid leukemia
Cytometry A. 2023 Nov 20. doi: 10.1002/cyto.a.24811. Online ahead of print.
ABSTRACT
Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia (AML). However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional Flow-MRD routines. This article is protected by copyright. All rights reserved.
PMID:37984809 | DOI:10.1002/cyto.a.24811
An extended Tudor domain within Vreteno interconnects Gtsf1L and Ago3 for piRNA biogenesis in Bombyx mori
EMBO J. 2023 Nov 20:e114072. doi: 10.15252/embj.2023114072. Online ahead of print.
ABSTRACT
Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons to silence them, thereby preserving genome integrity and fertility. The piRNA population can be expanded in the ping-pong amplification loop. Within this process, piRNA-associated PIWI proteins (piRISC) enter a membraneless organelle called nuage to cleave their target RNA, which is stimulated by Gtsf proteins. The resulting cleavage product gets loaded into an empty PIWI protein to form a new piRISC complex. However, for piRNA amplification to occur, the new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to be in physical proximity. In this study, we show that in silkworm cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3 and localizes to granules positive for BmAgo3 and BmVreteno. Biochemical assays further revealed that conserved residues within the unstructured tail of BmGtsf1L directly interact with BmVreteno. Using a combination of AlphaFold modeling, atomistic molecular dynamics simulations, and in vitro assays, we identified a novel binding interface on the BmVreteno-eTudor domain, which is required for BmGtsf1L binding. Our study reveals that a single eTudor domain within BmVreteno provides two binding interfaces and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.
PMID:37984437 | DOI:10.15252/embj.2023114072
A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration
Mol Syst Biol. 2023 Nov 20:e11801. doi: 10.15252/msb.202311801. Online ahead of print.
ABSTRACT
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
PMID:37984409 | DOI:10.15252/msb.202311801