Systems Biology
Base editing rescue of spinal muscular atrophy in cells and in mice
Science. 2023 Mar 30:eadg6518. doi: 10.1126/science.adg6518. Online ahead of print.
ABSTRACT
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from SMN protein insufficiency following SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild-type. AAV9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average lifespan, which was enhanced by one-time base editor+nusinersen co-administration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
PMID:36996170 | DOI:10.1126/science.adg6518
The role of data imbalance bias in the prediction of protein stability change upon mutation
PLoS One. 2023 Mar 30;18(3):e0283727. doi: 10.1371/journal.pone.0283727. eCollection 2023.
ABSTRACT
There is a controversy over what causes the low robustness of some programs for predicting protein stability change upon mutation. Some researchers suggested that low-quality data and insufficiently informative features are the primary reasons, while others attributed the problem largely to a bias caused by data imbalance as there are more destabilizing mutations than stabilizing ones. In this study, a simple approach was developed to construct a balanced dataset that was then conjugated with a leave-one-protein-out approach to illustrate that the bias may not be the primary reason for poor performance. A balanced dataset with some seemly good conventional n-fold CV results should not be used as a proof that a model for predicting protein stability change upon mutations is robust. Thus, some of the existing algorithms need to be re-examined before any practical applications. Also, more emphasis should be put on obtaining high quality and quantity of data and features in future research.
PMID:36996153 | DOI:10.1371/journal.pone.0283727
Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review
J Med Internet Res. 2023 Mar 30;25:e41588. doi: 10.2196/41588.
ABSTRACT
BACKGROUND: The collection, storage, and analysis of large data sets are relevant in many sectors. Especially in the medical field, the processing of patient data promises great progress in personalized health care. However, it is strictly regulated, such as by the General Data Protection Regulation (GDPR). These regulations mandate strict data security and data protection and, thus, create major challenges for collecting and using large data sets. Technologies such as federated learning (FL), especially paired with differential privacy (DP) and secure multiparty computation (SMPC), aim to solve these challenges.
OBJECTIVE: This scoping review aimed to summarize the current discussion on the legal questions and concerns related to FL systems in medical research. We were particularly interested in whether and to what extent FL applications and training processes are compliant with the GDPR data protection law and whether the use of the aforementioned privacy-enhancing technologies (DP and SMPC) affects this legal compliance. We placed special emphasis on the consequences for medical research and development.
METHODS: We performed a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews). We reviewed articles on Beck-Online, SSRN, ScienceDirect, arXiv, and Google Scholar published in German or English between 2016 and 2022. We examined 4 questions: whether local and global models are "personal data" as per the GDPR; what the "roles" as defined by the GDPR of various parties in FL are; who controls the data at various stages of the training process; and how, if at all, the use of privacy-enhancing technologies affects these findings.
RESULTS: We identified and summarized the findings of 56 relevant publications on FL. Local and likely also global models constitute personal data according to the GDPR. FL strengthens data protection but is still vulnerable to a number of attacks and the possibility of data leakage. These concerns can be successfully addressed through the privacy-enhancing technologies SMPC and DP.
CONCLUSIONS: Combining FL with SMPC and DP is necessary to fulfill the legal data protection requirements (GDPR) in medical research dealing with personal data. Even though some technical and legal challenges remain, for example, the possibility of successful attacks on the system, combining FL with SMPC and DP creates enough security to satisfy the legal requirements of the GDPR. This combination thereby provides an attractive technical solution for health institutions willing to collaborate without exposing their data to risk. From a legal perspective, the combination provides enough built-in security measures to satisfy data protection requirements, and from a technical perspective, the combination provides secure systems with comparable performance with centralized machine learning applications.
PMID:36995759 | DOI:10.2196/41588
Ultra-Small High-Entropy Alloy Nanoparticles: Efficient Nanozyme for Enhancing Tumor Photothermal Therapy
Adv Mater. 2023 Mar 30:e2302335. doi: 10.1002/adma.202302335. Online ahead of print.
ABSTRACT
High-entropy alloys nanoparticles (HEANPs) are receiving extensive attention due to their broad compositional tunability and unlimited potential in bioapplication. However, developing new methods to prepare ultra-small high-entropy alloy nanoparticles (US-HEANPs) faces severe challenges owing to their intrinsic thermodynamic instability. Furthermore, there are few reports on studying the effect of HEANPs in tumor therapy. Herein, the fabricated PtPdRuRhIr US-HEANPs act as bifunctional nanoplatforms for the highly efficient treatment of tumors. The US-HEANPs are engineered by the universal metal-ligand cross-linking strategy. This simple and scalable strategy is based on the aldol condensation of organometallics to form the target US-HEANPs. The synthesized US-HEANPs exhibit excellent peroxidase-like (POD-like) activity and can spanking catalyze the endogenous hydrogen peroxide to produce highly toxic hydroxyl radicals. Furthermore, the US-HEANPs possess a high photothermal conversion effect for converting 808 nm near-infrared light into heat energy. In vivo and in vitro experiments demonstrated that under the synergistic effect of POD-like activity and photothermal action, the US-HEANPs nanoplatform can effectively ablate cancer cells and treat tumors. We believe that this work not only provides a new perspective for the fabrication of HEANPs, but also opens the high-entropy nanozymes research direction and their biomedical application. This article is protected by copyright. All rights reserved.
PMID:36995655 | DOI:10.1002/adma.202302335
Enrichment Culture but Not Metagenomic Sequencing Identified a Highly Prevalent Phage Infecting <em>Lactiplantibacillus plantarum</em> in Human Feces
Microbiol Spectr. 2023 Mar 30:e0434022. doi: 10.1128/spectrum.04340-22. Online ahead of print.
ABSTRACT
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human diseases, but its phages in the human gut remain unexplored. Here, we report its first gut phage, Gut-P1, which we systematically screened using metagenomic sequencing, virus-like particle (VLP) sequencing, and enrichment culture from 35 fecal samples. Gut-P1 is virulent, belongs to the Douglaswolinvirus genus, and is highly prevalent in the gut (~11% prevalence); it has a genome of 79,928 bp consisting of 125 protein coding genes and displaying low sequence similarities to public L. plantarum phages. Physiochemical characterization shows that it has a short latent period and adapts to broad ranges of temperatures and pHs. Furthermore, Gut-P1 strongly inhibits the growth of L. plantarum strains at a multiplicity of infection (MOI) of 1e-6. Together, these results indicate that Gut-P1 can greatly impede the application of L. plantarum in humans. Strikingly, Gut-P1 was identified only in the enrichment culture, not in our metagenomic or VLP sequencing data nor in any public human phage databases, indicating the inefficiency of bulk sequencing in recovering low-abundance but highly prevalent phages and pointing to the unexplored hidden diversity of the human gut virome despite recent large-scale sequencing and bioinformatics efforts. IMPORTANCE As Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human gut-related diseases, its bacteriophages may pose a certain threat to their further application and should be identified and characterized more often from the human intestine. Here, we isolated and identified the first gut L. plantarum phage that is prevalent in a Chinese population. This phage, Gut-P1, is virulent and can strongly inhibit the growth of multiple L. plantarum strains at low MOIs. Our results also show that bulk sequencing is inefficient at recovering low-abundance but highly prevalent phages such as Gut-P1, suggesting that the hidden diversity of human enteroviruses has not yet been explored. Our results call for innovative approaches to isolate and identify intestinal phages from the human gut and to rethink our current understanding of the enterovirus, particularly its underestimated diversity and overestimated individual specificity.
PMID:36995238 | DOI:10.1128/spectrum.04340-22
Identification of IRAK1BP1 as a candidate prognostic factor in lung adenocarcinoma
Front Oncol. 2023 Mar 13;13:1132811. doi: 10.3389/fonc.2023.1132811. eCollection 2023.
ABSTRACT
INTRODUCTION: Lung cancer is one of the major causes of cancer-related mortality worldwide. High-throughput RNA sequencing (RNA-seq) of surgically removed tumors has been used to identify new biomarkers of lung cancer; however, contamination by non-tumor cells in the tumor microenvironment significantly interferes with the search for novel biomarkers. Tumor organoids, as a pre-clinical cancer model, exhibit similar molecular characteristics with tumor samples while minimizing the interference from other cells.
METHODS AND RESULTS: Here we analyzed six RNA-seq datasets collected from different organoid models, in which cells with oncogenic mutations were reprogrammed to mimic lung adenocarcinoma (LUAD) tumorigenesis. We uncovered 9 LUAD-specific biomarker genes by integrating transcriptomic data from multiple sources, and identified IRAK1BP1 as a novel predictor of LUAD disease outcome. Validation with RNA-seq and microarray data collected from multiple patient cohorts, as well as patient-derived xenograft (PDX) and lung cancer cell line models confirmed that IRAK1BP1 expression was significantly lower in tumor cells, and had no correlation with known markers oflung cancer prognosis. In addition, loss of IRAK1BP1 correlated with the group of LUAD patients with worse survival; and gene-set enrichment analysis using tumor and cell line data implicated that high IRAK1BP1 expression was associated with suppression of oncogenic pathways.
DISCUSSION: In conclusion, we demonstrate that IRAK1BP1 is a promising biomarker of LUAD prognosis.
PMID:36994215 | PMC:PMC10040777 | DOI:10.3389/fonc.2023.1132811
Predicting peritoneal recurrence in gastric cancer with serosal invasion using a pathomics nomogram
iScience. 2023 Mar 3;26(3):106246. doi: 10.1016/j.isci.2023.106246. eCollection 2023 Mar 17.
ABSTRACT
Peritoneal recurrence is the most frequent and lethal recurrence pattern in gastric cancer (GC) with serosal invasion after radical surgery. However, current evaluation methods are not adequate for predicting peritoneal recurrence in GC with serosal invasion. Emerging evidence shows that pathomics analyses could be advantageous for risk stratification and outcome prediction. Herein, we propose a pathomics signature composed of multiple pathomics features extracted from digital hematoxylin and eosin-stained images. We found that the pathomics signature was significantly associated with peritoneal recurrence. A competing-risk pathomics nomogram including carbohydrate antigen 19-9 level, depth of invasion, lymph node metastasis, and pathomics signature was developed for predicting peritoneal recurrence. The pathomics nomogram had favorable discrimination and calibration. Thus, the pathomics signature is a predictive indicator of peritoneal recurrence, and the pathomics nomogram may provide a helpful reference for predicting an individual's risk in peritoneal recurrence of GC with serosal invasion.
PMID:36994190 | PMC:PMC10040964 | DOI:10.1016/j.isci.2023.106246
Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: A computational study
Front Immunol. 2023 Mar 13;14:1080853. doi: 10.3389/fimmu.2023.1080853. eCollection 2023.
ABSTRACT
A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.
PMID:36993964 | PMC:PMC10042134 | DOI:10.3389/fimmu.2023.1080853
Human striatal glia differentially contribute to AD- and PD-specific neurodegeneration
Nat Aging. 2023 Mar;3(3):346-365. doi: 10.1038/s43587-023-00363-8. Epub 2023 Feb 9.
ABSTRACT
The commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice. We reveal common features between AD and PD astrocytes and regional differences that contribute toward amyloid pathology and neurodegeneration. In contrast, we found that transcriptomic changes in microglia are largely unique to each disorder. Our analysis identified a population of activated microglia that shared molecular signatures with murine disease-associated microglia (DAM) as well as disease-associated and regional differences in microglia transcriptomic changes linking microglia to disease-specific amyloid pathology, tauopathy and neuronal death. Finally, we delineate undescribed subpopulations of medium spiny neurons (MSNs) in the striatum and provide neuronal transcriptomic profiles suggesting disease-specific changes and selective neuronal vulnerability.
PMID:36993867 | PMC:PMC10046522 | DOI:10.1038/s43587-023-00363-8
Spatial cancer systems biology resolves heterotypic interactions and identifies disruption of spatial hierarchy as a pathological driver event
bioRxiv. 2023 Mar 19:2023.03.01.530706. doi: 10.1101/2023.03.01.530706. Preprint.
ABSTRACT
Spatially annotated single-cell datasets provide unprecedented opportunities to dissect cell-cell communication in development and disease. Heterotypic signaling includes interactions between different cell types and is well established in tissue development and spatial organization. Epithelial organization requires several different programs that are tightly regulated. Planar cell polarity (PCP) is the organization of epithelial cells along the planar axis, orthogonal to the apical-basal axis. Here, we investigate PCP factors and explore the implications of developmental regulators as malignant drivers. Utilizing cancer systems biology analysis, we derive a gene expression network for WNT-ligands (WNT) and their cognate frizzled (FZD) receptors in skin cutaneous melanoma. The profiles supported by unsupervised clustering of multiple-sequence alignments identify ligand-independent signaling and implications for metastatic progression based on the underpinning developmental spatial program. Omics studies and spatial biology connect developmental programs with oncological events and explain key spatial features of metastatic aggressiveness. Dysregulation of prominent PCP factors such as specific representatives of the WNT and FZD families in malignant melanoma recapitulates the development program of normal melanocytes but in an uncontrolled and disorganized fashion.
PMID:36993709 | PMC:PMC10054974 | DOI:10.1101/2023.03.01.530706
Novel Tools for Lassa Virus Surveillance in Peri-domestic Rodents
medRxiv. 2023 Mar 20:2023.03.17.23287380. doi: 10.1101/2023.03.17.23287380. Preprint.
ABSTRACT
BACKGROUND: Lassa fever (LF) is a rodent-borne disease endemic to West Africa. In the absence of licensed therapeutics or vaccines, rodent exclusion from living spaces remains the primary method of preventing LF. Zoonotic surveillance of Lassa virus (LASV), the etiologic agent of LF, can assess the burden of LASV in a region and guide public health measures against LF.
METHODS: In this study, we adapted commercially available LASV human diagnostics to assess the prevalence of LASV in peri-domestic rodents in Eastern Sierra Leone. Small mammal trapping was conducted in Kenema district, Sierra Leone between November 2018-July 2019. LASV antigen was detected using a commercially available LASV NP antigen rapid diagnostic test. LASV IgG antibodies against LASV nucleoprotein (NP) and glycoprotein (GP) were tested by adapting a commercially available semi-quantitative enzyme linked immunosorbent assay (ELISA) for detection of mouse-related and rat-related species IgG.
FINDINGS: Of the 373 tested specimens, 74 (20%) tested positive for LASV antigen. 40 (11%) specimens tested positive for LASV NP IgG, while an additional 12 (3%) specimens only tested positive for LASV GP IgG. Simultaneous antigen presence and IgG antibody presence was linked in Mastomys sp . specimens ( p < 0.01), but not Rattus sp . specimens ( p = 1). Despite the link between antigen presence and IgG antibody presence in Mastomys sp ., the strength of antigen response did not correlate with the strength of IgG response to either GP IgG or NP IgG.
INTERPRETATION: The tools developed in this study can aid in the generation of valuable public health data for rapid field assessment of LASV burden during outbreak investigations and general LASV surveillance.
FUNDING: Funding for this work was supported by the National Institute of Allergy and Infectious Diseases National Institute of Health, Department of Health and Human Services under the following grants: International Collaboration in Infectious Disease Research on Lassa fever and Ebola - ICIDR - U19 AI115589, Consortium for Viral Systems Biology - CViSB - 5U19AI135995, West African Emerging Infectious Disease Research Center - WARN-ID - U01AI151812, West African Center for Emerging Infectious Diseases: U01AI151801.
PMID:36993465 | PMC:PMC10055574 | DOI:10.1101/2023.03.17.23287380
Biologically informed NeuralODEs for genome-wide regulatory dynamics
Res Sq. 2023 Mar 14:rs.3.rs-2675584. doi: 10.21203/rs.3.rs-2675584/v1. Preprint.
ABSTRACT
Models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the causal gene-regulatory network (GRN) governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impedes scalability and/or explainability. To overcome these limitations, we developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that can flexibly incorporate prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of ODEs. We test accuracy of PHOENIX in a series of in silico experiments benchmarking it against several currently used tools for ODE estimation. We also demonstrate PHOENIX's flexibility by studying oscillating expression data from synchronized yeast cells and assess its scalability by modelling genome-scale breast cancer expression for samples ordered in pseudotime. Finally, we show how the combination of user-defined prior knowledge and functional forms from systems biology allows PHOENIX to encode key properties of the underlying GRN, and subsequently predict expression patterns in a biologically explainable way.
PMID:36993392 | PMC:PMC10055646 | DOI:10.21203/rs.3.rs-2675584/v1
Editorial: Contribution of omics to our understanding of human-bacterial interplay in health and disease
Front Genet. 2023 Mar 13;14:1172822. doi: 10.3389/fgene.2023.1172822. eCollection 2023.
NO ABSTRACT
PMID:36992703 | PMC:PMC10041563 | DOI:10.3389/fgene.2023.1172822
A Metagenomic Investigation of the Viruses Associated with Shiraz Disease in Australia
Viruses. 2023 Mar 17;15(3):774. doi: 10.3390/v15030774.
ABSTRACT
Shiraz disease (SD) is an economically important virus-associated disease that can significantly reduce yield in sensitive grapevine varieties and has so far only been reported in South Africa and Australia. In this study, RT-PCR and metagenomic high-throughput sequencing was used to study the virome of symptomatic and asymptomatic grapevines within vineyards affected by SD and located in South Australia. Results showed that grapevine virus A (GVA) phylogroup II variants were strongly associated with SD symptoms in Shiraz grapevines that also had mixed infections of viruses including combinations of grapevine leafroll-associated virus 3 (GLRaV-3) and grapevine leafroll-associated virus 4 strains 5, 6 and 9 (GLRaV-4/5, GLRaV-4/6, GLRaV-4/9). GVA phylogroup III variants, on the other hand, were present in both symptomatic and asymptomatic grapevines, suggesting no or decreased virulence of these strains. Similarly, only GVA phylogroup I variants were found in heritage Shiraz grapevines affected by mild leafroll disease, along with GLRaV-1, suggesting this phylogroup may not be associated with SD.
PMID:36992482 | DOI:10.3390/v15030774
Genome Characterisation of the CGMMV Virus Population in Australia-Informing Plant Biosecurity Policy
Viruses. 2023 Mar 14;15(3):743. doi: 10.3390/v15030743.
ABSTRACT
The detection of cucumber green mottle mosaic (CGMMV) in the Northern Territory (NT), Australia, in 2014 led to the introduction of strict quarantine measures for the importation of cucurbit seeds by the Australian federal government. Further detections in Queensland, Western Australia (WA), New South Wales and South Australia occurred in the period 2015-2020. To explore the diversity of the current Australian CGMMV population, 35 new coding sequence complete genomes for CGMMV isolates from Australian incursions and surveys were prepared for this study. In conjunction with published genomes from the NT and WA, sequence, phylogenetic, and genetic variation and variant analyses were performed, and the data were compared with those for international CGMMV isolates. Based on these analyses, it can be inferred that the Australian CGMMV population resulted from a single virus source via multiple introductions.
PMID:36992452 | DOI:10.3390/v15030743
Rooting and Dating Large SARS-CoV-2 Trees by Modeling Evolutionary Rate as a Function of Time
Viruses. 2023 Mar 5;15(3):684. doi: 10.3390/v15030684.
ABSTRACT
Almost all published rooting and dating studies on SARS-CoV-2 assumed that (1) evolutionary rate does not change over time although different lineages can have different evolutionary rates (uncorrelated relaxed clock), and (2) a zoonotic transmission occurred in Wuhan and the culprit was immediately captured, so that only the SARS-CoV-2 genomes obtained in 2019 and the first few months of 2020 (resulting from the first wave of the global expansion from Wuhan) are sufficient for dating the common ancestor. Empirical data contradict the first assumption. The second assumption is not warranted because mounting evidence suggests the presence of early SARS-CoV-2 lineages cocirculating with the Wuhan strains. Large trees with SARS-CoV-2 genomes beyond the first few months are needed to increase the likelihood of finding SARS-CoV-2 lineages that might have originated at the same time as (or even before) those early Wuhan strains. I extended a previously published rapid rooting method to model evolutionary rate as a linear function instead of a constant. This substantially improves the dating of the common ancestor of sampled SARS-CoV-2 genomes. Based on two large trees with 83,688 and 970,777 high-quality and full-length SARS-CoV-2 genomes that contain complete sample collection dates, the common ancestor was dated to 12 June 2019 and 7 July 2019 with the two trees, respectively. The two data sets would give dramatically different or even absurd estimates if the rate was treated as a constant. The large trees were also crucial for overcoming the high rate-heterogeneity among different viral lineages. The improved method was implemented in the software TRAD.
PMID:36992393 | DOI:10.3390/v15030684
Inhibitors of the Ubiquitin-Mediated Signaling Pathway Exhibit Broad-Spectrum Antiviral Activities against New World Alphaviruses
Viruses. 2023 Feb 28;15(3):655. doi: 10.3390/v15030655.
ABSTRACT
New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome system (UPS)-associated signaling events are known to play an important role in the establishment of a productive infection for several acutely infectious viruses. The critical engagement of the UPS-associated signaling mechanisms by many viruses as host-pathogen interaction hubs led us to hypothesize that small molecule inhibitors that interfere with these signaling pathways will exert broad-spectrum inhibitory activity against alphaviruses. We queried eight inhibitors of the UPS signaling pathway for antiviral outcomes against VEEV. Three of the tested inhibitors, namely NSC697923 (NSC), bardoxolone methyl (BARM) and omaveloxolone (OMA) demonstrated broad-spectrum antiviral activity against VEEV and EEEV. Dose dependency and time of addition studies suggest that BARM and OMA exhibit intracellular and post-entry viral inhibition. Cumulatively, our studies indicate that inhibitors of the UPS-associated signaling pathways exert broad-spectrum antiviral outcomes in the context of VEEV and EEEV infection, supporting their translational application as therapeutic candidates to treat alphavirus infections.
PMID:36992362 | DOI:10.3390/v15030655
Staphylococcal enterotoxin B as DNA vaccine against breast cancer in a murine model
Int Microbiol. 2023 Mar 29. doi: 10.1007/s10123-023-00348-y. Online ahead of print.
ABSTRACT
Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed. The designed SEB gene construct can be a new model vaccine for breast cancer because it effectively induces necrosis and produces specific immune responses. This structure does not hurt normal cells and is a safer treatment than chemotherapy and radiation therapy. Its slow and long-term release gently stimulates the immune system and cellular memory. It could be applied as a new model for inducing apoptosis and antitumor immunity to treat cancer.
PMID:36991248 | DOI:10.1007/s10123-023-00348-y
STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma
Nature. 2023 Mar 29. doi: 10.1038/s41586-023-05880-5. Online ahead of print.
ABSTRACT
Metastasis frequently develops from disseminated cancer cells that remain dormant after the apparently successful treatment of a primary tumour. These cells fluctuate between an immune-evasive quiescent state and a proliferative state liable to immune-mediated elimination1-6. Little is known about the clearing of reawakened metastatic cells and how this process could be therapeutically activated to eliminate residual disease in patients. Here we use models of indolent lung adenocarcinoma metastasis to identify cancer cell-intrinsic determinants of immune reactivity during exit from dormancy. Genetic screens of tumour-intrinsic immune regulators identified the stimulator of interferon genes (STING) pathway as a suppressor of metastatic outbreak. STING activity increases in metastatic progenitors that re-enter the cell cycle and is dampened by hypermethylation of the STING promoter and enhancer in breakthrough metastases or by chromatin repression in cells re-entering dormancy in response to TGFβ. STING expression in cancer cells derived from spontaneous metastases suppresses their outgrowth. Systemic treatment of mice with STING agonists eliminates dormant metastasis and prevents spontaneous outbreaks in a T cell- and natural killer cell-dependent manner-these effects require cancer cell STING function. Thus, STING provides a checkpoint against the progression of dormant metastasis and a therapeutically actionable strategy for the prevention of disease relapse.
PMID:36991128 | DOI:10.1038/s41586-023-05880-5
Deletion mapping of regulatory elements for GATA3 in T cells reveals a distal enhancer involved in allergic diseases
Am J Hum Genet. 2023 Mar 23:S0002-9297(23)00092-7. doi: 10.1016/j.ajhg.2023.03.008. Online ahead of print.
ABSTRACT
GATA3 is essential for T cell differentiation and is surrounded by genome-wide association study (GWAS) hits for immune traits. Interpretation of these GWAS hits is challenging because gene expression quantitative trait locus (eQTL) studies lack power to detect variants with small effects on gene expression in specific cell types and the genome region containing GATA3 contains dozens of potential regulatory sequences. To map regulatory sequences for GATA3, we performed a high-throughput tiling deletion screen of a 2 Mb genome region in Jurkat T cells. This revealed 23 candidate regulatory sequences, all but one of which is within the same topological-associating domain (TAD) as GATA3. We then performed a lower-throughput deletion screen to precisely map regulatory sequences in primary T helper 2 (Th2) cells. We tested 25 sequences with ∼100 bp deletions and validated five of the strongest hits with independent deletion experiments. Additionally, we fine-mapped GWAS hits for allergic diseases in a distal regulatory element, 1 Mb downstream of GATA3, and identified 14 candidate causal variants. Small deletions spanning the candidate variant rs725861 decreased GATA3 levels in Th2 cells, and luciferase reporter assays showed regulatory differences between its two alleles, suggesting a causal mechanism for this variant in allergic diseases. Our study demonstrates the power of integrating GWAS signals with deletion mapping and identifies critical regulatory sequences for GATA3.
PMID:36990085 | DOI:10.1016/j.ajhg.2023.03.008