Systems Biology
Magnesium Improves Cardiac Function in Experimental Uremia by Altering Cardiac Elastin Protein Content
Nutrients. 2023 Mar 7;15(6):1303. doi: 10.3390/nu15061303.
ABSTRACT
Cardiovascular complications are accompanied by life-threatening complications and represent the major cause of death in patients with chronic kidney disease (CKD). Magnesium is important for the physiology of cardiac function, and its deficiency is common in CKD. In the present study, we investigated the impact of oral magnesium carbonate supplementation on cardiac function in an experimental model of CKD induced in Wistar rats by an adenine diet. Echocardiographic analyses revealed restoration of impaired left ventricular cardiac function in animals with CKD. Cardiac histology and real-time PCR confirmed a high amount of elastin protein and increased collagen III expression in CKD rats supplemented with dietary magnesium as compared with CKD controls. Both structural proteins are crucial in maintaining cardiac health and physiology. Aortic calcium content increased in CKD as compared with tissue from control animals. Magnesium supplementation numerically lowered the increases in aortic calcium content as it remained statistically unchanged, compared with controls. In summary, the present study provides evidence for an improvement in cardiovascular function and aortic wall integrity in a rat model of CKD by magnesium, as evidenced by echocardiography and histology.
PMID:36986034 | DOI:10.3390/nu15061303
Storage and Algal Association of Bacteria That Protect <em>Microchloropsis salina</em> from Grazing by <em>Brachionus plicatilis</em>
Microorganisms. 2023 Mar 18;11(3):786. doi: 10.3390/microorganisms11030786.
ABSTRACT
Loss of algal production from the crashes of algal mass cultivation systems represents a significant barrier to the economic production of microalgal-based biofuels. Current strategies for crash prevention can be too costly to apply broadly as prophylaxis. Bacteria are ubiquitous in microalgal mass production cultures, however few studies investigate their role and possible significance in this particular environment. Previously, we demonstrated the success of selected protective bacterial communities to save Microchloropsis salina cultures from grazing by the rotifer Brachionus plicatilis. In the current study, these protective bacterial communities were further characterized by fractionation into rotifer-associated, algal-associated, and free-floating bacterial fractions. Small subunit ribosomal RNA amplicon sequencing was used to identify the bacterial genera present in each of the fractions. Here, we show that Marinobacter, Ruegeria, and Boseongicola in algae and rotifer fractions from rotifer-infected cultures likely play key roles in protecting algae from rotifers. Several other identified taxa likely play lesser roles in protective capability. The identification of bacterial community members demonstrating protective qualities will allow for the rational design of microbial communities grown in stable co-cultures with algal production strains in mass cultivation systems. Such a system would reduce the frequency of culture crashes and represent an essentially zero-cost form of algal crop protection.
PMID:36985359 | DOI:10.3390/microorganisms11030786
Identification and Characterization of Metabolic Subtypes of Endometrial Cancer Using a Systems-Level Approach
Metabolites. 2023 Mar 9;13(3):409. doi: 10.3390/metabo13030409.
ABSTRACT
Endometrial cancer (EC) is the most common gynecological cancer worldwide. Understanding metabolic adaptation and its heterogeneity in tumor tissues may provide new insights and help in cancer diagnosis, prognosis, and treatment. In this study, we investigated metabolic alterations of EC to understand the variations in metabolism within tumor samples. Integration of transcriptomics data of EC (RNA-Seq) and the human genome-scale metabolic network was performed to identify the metabolic subtypes of EC and uncover the underlying dysregulated metabolic pathways and reporter metabolites in each subtype. The relationship between metabolic subtypes and clinical variables was explored. Further, we correlated the metabolic changes occurring at the transcriptome level with the genomic alterations. Based on metabolic profile, EC patients were stratified into two subtypes (metabolic subtype-1 and subtype-2) that significantly correlated to patient survival, tumor stages, mutation, and copy number variations. We observed the co-activation of the pentose phosphate pathway, one-carbon metabolism, and genes involved in controlling estrogen levels in metabolic subtype-2, which is linked to poor survival. PNMT and ERBB2 are also upregulated in metabolic subtype-2 samples and present on the same chromosome locus 17q12, which is amplified. PTEN and TP53 mutations show mutually exclusive behavior between subtypes and display a difference in survival. This work identifies metabolic subtypes with distinct characteristics at the transcriptome and genome levels, highlighting the metabolic heterogeneity within EC.
PMID:36984849 | DOI:10.3390/metabo13030409
Mapping the Metabolic Niche of Citrate Metabolism and <em>SLC13A5</em>
Metabolites. 2023 Feb 23;13(3):331. doi: 10.3390/metabo13030331.
ABSTRACT
The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the "multiple-hit theory" and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.
PMID:36984771 | DOI:10.3390/metabo13030331
Comparison of Local Metabolic Changes in Diabetic Rodent Kidneys Using Mass Spectrometry Imaging
Metabolites. 2023 Feb 22;13(3):324. doi: 10.3390/metabo13030324.
ABSTRACT
Understanding the renal region-specific metabolic alteration in different animal models of diabetic nephropathy (DN) is critical for uncovering the underlying mechanisms and for developing effective treatments. In the present study, spatially resolved metabolomics based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) was used to compare the local metabolic changes in the kidneys of HFD/STZ-induced diabetic rats and db/db mice. As a result, a total of 67 and 59 discriminating metabolites were identified and visualized in the kidneys of the HFD/STZ-induced diabetic rats and db/db mice, respectively. The result showed that there were significant region-specific changes in the glycolysis, TCA cycle, lipid metabolism, carnitine metabolism, choline metabolism, and purine metabolism in both DN models. However, the regional levels of the ten metabolites, including glucose, AMP, eicosenoic acid, eicosapentaenoic acid, Phosphatidylserine (36:1), Phosphatidylserine (36:4), Phosphatidylethanolamine (34:1), Phosphatidylethanolamine (36:4), Phosphatidylcholine (34:2), Phosphatidylinositol (38:5) were changed in reversed directions, indicating significant differences in the local metabolic phenotypes of these two commonly used DN animal models. This study provides comprehensive and in-depth analysis of the differences in the tissue and molecular pathological features in diabetic kidney injury in HFD/STZ-induced diabetic rats and db/db mice.
PMID:36984764 | DOI:10.3390/metabo13030324
Phenothiazines Rapidly Induce Laccase Expression and Lignin-Degrading Properties in the White-Rot Fungus <em>Phlebia radiata</em>
J Fungi (Basel). 2023 Mar 18;9(3):371. doi: 10.3390/jof9030371.
ABSTRACT
Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.
PMID:36983539 | DOI:10.3390/jof9030371
Evaluating the Efficacy of Pervistop<sup>®</sup>, a New Combination Based on EGCG, Folic Acid, Vitamin B12 and Hyaluronic Acid on Patients with Human Papilloma Virus (HPV) Persistent Infections and Cervical Lesions: A Pilot Study
J Clin Med. 2023 Mar 10;12(6):2171. doi: 10.3390/jcm12062171.
ABSTRACT
BACKGROUND: The persistence of the HPV infection is a risk factor in the integration of viral DNA in the host genome, leading to transforming events. The lack of therapies for HPV-persistent infections determine an unmet medical need.
METHODS: We enrolled forty patients with persistent HPV infections and cervical lesions and divided them into two groups. The women in the treated group received 200 mg epigallocatechin gallate (EGCG), 400 µg folic acid (FA), 1 mg vitamin B12, and 50 mg hyaluronic acid (HA) for 12 weeks. The control group received no treatment.
RESULTS: 40 patients completed the study. Fifteen out of 20 women in the control group still had an LSIL at the end of the study. One woman had a decrease in the DNA load, while six had no change and eight had an increase in DNA content. In the treatment group, 17 out of 20 women achieved a full viral clearance. These women showed no cytological or histological evidence of lesions following the treatment.
CONCLUSIONS: Our data highlight the possible effect of such combination on LSIL. Therefore, the evidence reported here supports the potential to carry out further randomized placebo-controlled studies with an adequate number of patients to verify our results.
PMID:36983172 | DOI:10.3390/jcm12062171
Modulation of Endothelial Function by TMAO, a Gut Microbiota-Derived Metabolite
Int J Mol Sci. 2023 Mar 18;24(6):5806. doi: 10.3390/ijms24065806.
ABSTRACT
Endothelial function is essential in the maintenance of systemic homeostasis, whose modulation strictly depends on the proper activity of tissue-specific angiocrine factors on the physiopathological mechanisms acting at both single and multi-organ levels. Several angiocrine factors take part in the vascular function itself by modulating vascular tone, inflammatory response, and thrombotic state. Recent evidence has outlined a strong relationship between endothelial factors and gut microbiota-derived molecules. In particular, the direct involvement of trimethylamine N-oxide (TMAO) in the development of endothelial dysfunction and its derived pathological outcomes, such as atherosclerosis, has come to light. Indeed, the role of TMAO in the modulation of factors strictly related to the development of endothelial dysfunction, such as nitric oxide, adhesion molecules (ICAM-1, VCAM-1, and selectins), and IL-6, has been widely accepted. The aim of this review is to present the latest studies that describe a direct role of TMAO in the modulation of angiocrine factors primarily involved in the development of vascular pathologies.
PMID:36982880 | DOI:10.3390/ijms24065806
Myeloperoxidase PET Imaging Tracks Intracellular and Extracellular Treatment Changes in Experimental Myocardial Infarction
Int J Mol Sci. 2023 Mar 16;24(6):5704. doi: 10.3390/ijms24065704.
ABSTRACT
Myeloperoxidase (MPO) is a highly oxidative, pro-inflammatory enzyme involved in post-myocardial infarction (MI) injury and is a potential therapeutic target. While multiple MPO inhibitors have been developed, the lack of an imaging reporter to select appropriate patients and assess therapeutic efficacy has hampered clinical development. Thus, a translational imaging method to detect MPO activity non-invasively would help to better understand the role MPO plays in MI and facilitate novel therapy development and clinical validation. Interestingly, many MPO inhibitors affect both intracellular and extracellular MPO, but previous MPO imaging methods can only report extracellular MPO activity. In this study, we found that an MPO-specific PET imaging agent (18F-MAPP) can cross cell membranes to report intracellular MPO activity. We showed that 18F-MAPP can track the treatment effect of an MPO inhibitor (PF-2999) at different doses in experimental MI. The imaging results were corroborated by ex vivo autoradiography and gamma counting data. Furthermore, extracellular and intracellular MPO activity assays revealed that 18F-MAPP imaging can report the changes induced by PF-2999 on both intracellular and extracellular MPO activities. These findings support 18F-MAPP as a translational candidate to noninvasively report MPO activity and accelerate drug development against MPO and other related inflammatory targets.
PMID:36982778 | DOI:10.3390/ijms24065704
Integrative Analysis of the Ethanol Tolerance of <em>Saccharomyces cerevisiae</em>
Int J Mol Sci. 2023 Mar 15;24(6):5646. doi: 10.3390/ijms24065646.
ABSTRACT
Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.
PMID:36982719 | DOI:10.3390/ijms24065646
Glycosylation Analysis of Urinary Peptidome Highlights IGF2 Glycopeptides in Association with CKD
Int J Mol Sci. 2023 Mar 11;24(6):5402. doi: 10.3390/ijms24065402.
ABSTRACT
Chronic kidney disease (CKD) is prevalent in 10% of world's adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations. Urine samples from eight CKD and two healthy subjects were analyzed by CE-MS/MS and glycopeptides were identified by a specific software followed by manual inspection of the spectra. Distribution of the identified glycopeptides and their correlation with Age, eGFR and Albuminuria were evaluated in 3810 existing datasets. In total, 17 O-linked glycopeptides from 7 different proteins were identified, derived primarily from Insulin-like growth factor-II (IGF2). Glycosylation occurred at the surface exposed IGF2 Threonine 96 position. Three glycopeptides (DVStPPTVLPDNFPRYPVGKF, DVStPPTVLPDNFPRYPVG and DVStPPTVLPDNFPRYP) exhibited positive correlation with Age. The IGF2 glycopeptide (tPPTVLPDNFPRYP) showed a strong negative association with eGFR. These results suggest that with aging and deteriorating kidney function, alterations in IGF2 proteoforms take place, which may reflect changes in mature IGF2 protein. Further experiments corroborated this hypothesis as IGF2 increased plasma levels were observed in CKD patients. Protease predictions, considering also available transcriptomics data, suggest activation of cathepsin S with CKD, meriting further investigation.
PMID:36982475 | DOI:10.3390/ijms24065402
Combinatorial Network of Transcriptional and miRNA Regulation in Colorectal Cancer
Int J Mol Sci. 2023 Mar 10;24(6):5356. doi: 10.3390/ijms24065356.
ABSTRACT
Colorectal cancer is one of the leading causes of cancer-associated mortality across the worldwide. One of the major challenges in colorectal cancer is the understanding of the regulatory mechanisms of biological molecules. In this study, we aimed to identify novel key molecules in colorectal cancer by using a computational systems biology approach. We constructed the colorectal protein-protein interaction network which followed hierarchical scale-free nature. We identified TP53, CTNBB1, AKT1, EGFR, HRAS, JUN, RHOA, and EGF as bottleneck-hubs. The HRAS showed the largest interacting strength with functional subnetworks, having strong correlation with protein phosphorylation, kinase activity, signal transduction, and apoptotic processes. Furthermore, we constructed the bottleneck-hubs' regulatory networks with their transcriptional (transcription factor) and post-transcriptional (miRNAs) regulators, which exhibited the important key regulators. We observed miR-429, miR-622, and miR-133b and transcription factors (EZH2, HDAC1, HDAC4, AR, NFKB1, and KLF4) regulates four bottleneck-hubs (TP53, JUN, AKT1 and EGFR) at the motif level. In future, biochemical investigation of the observed key regulators could provide further understanding about their role in the pathophysiology of colorectal cancer.
PMID:36982429 | DOI:10.3390/ijms24065356
Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy
Int J Mol Sci. 2023 Mar 9;24(6):5280. doi: 10.3390/ijms24065280.
ABSTRACT
Epilepsy is a highly prevalent, severely debilitating neurological disorder characterized by seizures and neuronal hyperactivity due to an imbalanced neurotransmission. As genetic factors play a key role in epilepsy and its treatment, various genetic and genomic technologies continue to dissect the genetic causes of this disorder. However, the exact pathogenesis of epilepsy is not fully understood, necessitating further translational studies of this condition. Here, we applied a computational in silico approach to generate a comprehensive network of molecular pathways involved in epilepsy, based on known human candidate epilepsy genes and their established molecular interactors. Clustering the resulting network identified potential key interactors that may contribute to the development of epilepsy, and revealed functional molecular pathways associated with this disorder, including those related to neuronal hyperactivity, cytoskeletal and mitochondrial function, and metabolism. While traditional antiepileptic drugs often target single mechanisms associated with epilepsy, recent studies suggest targeting downstream pathways as an alternative efficient strategy. However, many potential downstream pathways have not yet been considered as promising targets for antiepileptic treatment. Our study calls for further research into the complexity of molecular mechanisms underlying epilepsy, aiming to develop more effective treatments targeting novel putative downstream pathways of this disorder.
PMID:36982355 | DOI:10.3390/ijms24065280
NaRnEA: An Information Theoretic Framework for Gene Set Analysis
Entropy (Basel). 2023 Mar 21;25(3):542. doi: 10.3390/e25030542.
ABSTRACT
Gene sets are being increasingly leveraged to make high-level biological inferences from transcriptomic data; however, existing gene set analysis methods rely on overly conservative, heuristic approaches for quantifying the statistical significance of gene set enrichment. We created Nonparametric analytical-Rank-based Enrichment Analysis (NaRnEA) to facilitate accurate and robust gene set analysis with an optimal null model derived using the information theoretic Principle of Maximum Entropy. By measuring the differential activity of ~2500 transcriptional regulatory proteins based on the differential expression of each protein's transcriptional targets between primary tumors and normal tissue samples in three cohorts from The Cancer Genome Atlas (TCGA), we demonstrate that NaRnEA critically improves in two widely used gene set analysis methods: Gene Set Enrichment Analysis (GSEA) and analytical-Rank-based Enrichment Analysis (aREA). We show that the NaRnEA-inferred differential protein activity is significantly correlated with differential protein abundance inferred from independent, phenotype-matched mass spectrometry data in the Clinical Proteomic Tumor Analysis Consortium (CPTAC), confirming the statistical and biological accuracy of our approach. Additionally, our analysis crucially demonstrates that the sample-shuffling empirical null models leveraged by GSEA and aREA for gene set analysis are overly conservative, a shortcoming that is avoided by the newly developed Maximum Entropy analytical null model employed by NaRnEA.
PMID:36981431 | DOI:10.3390/e25030542
Using Next-Generation Sequencing to Disentangle the Diet and Incidence of Intestinal Parasites of Falkland Flightless Steamer Duck <em>Tachyeres brachypterus</em> and Patagonian Crested Duck <em>Lophonetta specularioides</em> Sharing a South Atlantic...
Genes (Basel). 2023 Mar 16;14(3):731. doi: 10.3390/genes14030731.
ABSTRACT
Species overlapping in habitat use can cohabit depending on how they exploit resources. To understand segregation in resource use, an exhaustive knowledge of the diet is required. We aimed to disentangle the diet composition of the Falkland Flightless Steamer Duck Tachyeres brachypterus and the Patagonian Crested Duck Lophonetta specularioides sharing a coastal environment. Using DNA extracted from scats and Illumina sequencing, we generated a list of molecular operational taxonomic units. Both ducks consumed a variety of invertebrates, frequently overlapping in the taxa consumed. However, only the Falkland Flightless Steamer Ducks consumed fish, which might be indicative of dietary specialization and inter-specific segregation in the restricted space that these birds share. Moreover, the female and male Falkland Flightless Steamer Ducks consumed different fish prey, with almost one-third of the fish taxa being consumed by females only and another similar number consumed by males only. This result might suggest a case of intra-specific competition, triggering sexual segregation. Additionally, we detected parasitic Platyelminthes (Cestoda and Trematoda), with different frequencies of occurrence, probably related to the different diet compositions of the ducks. This study provides the necessary baseline for future investigations of the ecological segregation of these ducks.
PMID:36981002 | DOI:10.3390/genes14030731
Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients
Cancers (Basel). 2023 Mar 16;15(6):1795. doi: 10.3390/cancers15061795.
ABSTRACT
Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein-protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.
PMID:36980682 | DOI:10.3390/cancers15061795
Progranulin Oncogenic Network in Solid Tumors
Cancers (Basel). 2023 Mar 10;15(6):1706. doi: 10.3390/cancers15061706.
ABSTRACT
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
PMID:36980592 | DOI:10.3390/cancers15061706
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function
Cancers (Basel). 2023 Mar 9;15(6):1693. doi: 10.3390/cancers15061693.
ABSTRACT
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
PMID:36980579 | DOI:10.3390/cancers15061693
Validation and Determination of Physical Activity Intensity GT3X+ Cut-Points in Children and Adolescents with Physical Disabilities: Preliminary Results in a Cerebral Palsy Population
Children (Basel). 2023 Feb 27;10(3):475. doi: 10.3390/children10030475.
ABSTRACT
BACKGROUND: Children and adolescents with disabilities engage in low levels of moderate-to-vigorous intensity physical activity (MVPA), which may create the onset of a sedentary lifestyle. In light of this, MVPA levels must be quantified with a valid tool such as accelerometry. This study aimed to: (i) analyze the accuracy of Evenson cut-points by estimating MVPA and sedentary behavior (SB) in children and adolescents with disabilities; (ii) define new equations to estimate energy expenditure (EE) with the GT3X+ accelerometer in this population and particularly in those with cerebral palsy (CP); (iii) define specific GT3X+ cut-points to estimate MVPA in those with CP.
METHODS: A total of 23 children and adolescents with disabilities (10 ± 3 years; 44%females) participated in the study. GT3X+-counts and oxygen uptake (VO2) were measured in four laboratory walking conditions.
RESULTS: (i) Evenson cut-points were accurate; (ii) new equations were defined to effectively predict EE; (iii) specific GT3X+ cut-points (VM ≥ 702 counts·min-1; Y-Axis ≥ 360 counts·min-1) were defined for estimating MVPA levels in children and adolescents with CP.
CONCLUSIONS: The use of specific cut-points for ActiGraph GT3X+ seems to be accurate to estimate MVPA levels in children and adolescents with disabilities and, particularly, in those with CP, at least in laboratory conditions.
PMID:36980034 | DOI:10.3390/children10030475
Infant Fecal Fermentations with Galacto-Oligosaccharides and 2'-Fucosyllactose Show Differential <em>Bifidobacterium longum</em> Stimulation at Subspecies Level
Children (Basel). 2023 Feb 23;10(3):430. doi: 10.3390/children10030430.
ABSTRACT
The objective of the current study was to evaluate the potential of 2'-FL and GOS, individually and combined, in beneficially modulating the microbial composition of infant and toddler (12-18 months) feces using the micro-Matrix bioreactor. In addition, the impacts of GOS and 2'-FL, individually and combined, on the outgrowth of fecal bifidobacteria at (sub)species level was investigated using the baby M-SHIME® model. For young toddlers, significant increases in the genera Bifidobacterium, Veillonella, and Streptococcus, and decreases in Enterobacteriaceae, Clostridium XIVa, and Roseburia were observed in all supplemented fermentations. In addition, GOS, and combinations of GOS and 2'-FL, increased Collinsella and decreased Salmonella, whereas 2'-FL, and combined GOS and 2'-FL, decreased Dorea. Alpha diversity increased significantly in infants with GOS and/or 2'-FL, as well as the relative abundances of the genera Veillonella and Akkermansia with 2'-FL, and Lactobacillus with GOS. Combinations of GOS and 2'-FL significantly stimulated Veillonella, Lactobacillus, Bifidobacterium, and Streptococcus. In all supplemented fermentations, Proteobacteria decreased, with the most profound decreases accomplished by the combination of GOS and 2'-FL. When zooming in on the different (sub)species of Bifidobacterium, GOS and 2'-FL were shown to be complementary in stimulating breast-fed infant-associated subspecies of Bifidobacterium longum in a dose-dependent manner: GOS stimulated Bifidobacterium longum subsp. longum, whereas 2'-FL supported outgrowth of Bifidobacterium longum subsp. infantis.
PMID:36979988 | DOI:10.3390/children10030430