Systems Biology
Designing Effective Multi-Target Drugs and Identifying Biomarkers in Recurrent Pregnancy Loss (RPL) Using In Vivo, In Vitro, and In Silico Approaches
Biomedicines. 2023 Mar 13;11(3):879. doi: 10.3390/biomedicines11030879.
ABSTRACT
Recurrent pregnancy loss (RPL) occurs in approximately 5% of women. Despite an abundance of evidence, the molecular mechanism of RPL's pathology remains unclear. Here, we report the protective role of polo-like kinase 1 (PLK1) during RPL. We aimed to construct an RPL network utilizing GEO datasets and identified hub high-traffic genes. We also investigated whether the expressions of PLK1 were altered in the chorionic villi collected from women with RPL compared to those from healthy early pregnant women. Gene expression differences were evaluated using both pathway and gene ontology (GO) analyses. The identified genes were validated using in vivo and in vitro models. Mice with PLK1-overexpression and PLK1-knockdown in vitro models were produced by transfecting certain plasmids and si-RNA, respectively. The apoptosis in the chorionic villi, mitochondrial function, and NF-κB signaling activity was evaluated. To suppress the activation of PLK1, the PLK1 inhibitor BI2536 was administered. The HTR-8/SVneo and JEG-3 cell lines were chosen to establish an RPL model in vitro. The NF-κB signaling, Foxo signaling, PI3K/AKT, and endometrial cancer signaling pathways were identified via the RPL regulatory network. The following genes were identified: PLK1 as hub high-traffic gene and MMP2, MMP9, BAX, MFN1, MFN2, FOXO1, OPA1, COX15, BCL2, DRP1, FIS1, TRAF2, and TOP2A. Clinical samples were examined, and the results demonstrated that RPL patients had tissues with decreased PLK1 expression in comparison to women with normal pregnancies (p < 0.01). In vitro, PLK1 knockdown induced the NF-κB signaling pathway and apoptosis activation while decreasing cell invasion, migration, and proliferation (p < 0.05). Furthermore, the in vivo model proved that cell mitochondrial function and chorionic villi development are both hampered by PLK1 suppression. Our findings revealed that the PLK1/TRAF2/NF-κB axis plays a crucial role in RPL-induced chorionic villi dysfunction by regulating mitochondrial dynamics and apoptosis and might be a potential therapeutic target in the clinic.
PMID:36979858 | DOI:10.3390/biomedicines11030879
Alzheimer's Disease from the Amyloidogenic Theory to the Puzzling Crossroads between Vascular, Metabolic and Energetic Maladaptive Plasticity
Biomedicines. 2023 Mar 11;11(3):861. doi: 10.3390/biomedicines11030861.
ABSTRACT
Alzheimer's disease (AD) is a progressive and degenerative disease producing the most common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD pathogenesis: amyloid β (Aβ) and tau. Amyloid deposition reported in all AD patients is nowadays considered an independent risk factor for cognitive decline. Vascular damage and blood-brain barrier (BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression. Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss, which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism is compromised, showing a specific region distribution. This energy deficit worsens throughout aging. Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal cortex and in the parietal lobes. The current aim is to understand the complex interactions between amyloid β (Aβ) and tau and elements of the BBB and NVU in the brain. This new approach aimed at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment would allow us to define therapies aimed at predicting and slowing down the progression of AD.
PMID:36979840 | DOI:10.3390/biomedicines11030861
Structural Insights into the Distortion of the Ribosomal Small Subunit at Different Magnesium Concentrations
Biomolecules. 2023 Mar 20;13(3):566. doi: 10.3390/biom13030566.
ABSTRACT
Magnesium ions are abundant and play indispensable functions in the ribosome. A decrease in Mg2+ concentration causes 70S ribosome dissociation and subsequent unfolding. Structural distortion at low Mg2+ concentrations has been observed in an immature pre50S, while the structural changes in mature subunits have not yet been studied. Here, we purified the 30S subunits of E. coli cells under various Mg2+ concentrations and analyzed their structural distortion by cryo-electron microscopy. Upon systematically interrogating the structural heterogeneity within the 1 mM Mg2+ dataset, we observed 30S particles with different levels of structural distortion in the decoding center, h17, and the 30S head. Our model showed that, when the Mg2+ concentration decreases, the decoding center distorts, starting from h44 and followed by the shifting of h18 and h27, as well as the dissociation of ribosomal protein S12. Mg2+ deficiency also eliminates the interactions between h17, h10, h15, and S16, resulting in the movement of h17 towards the tip of h6. More flexible structures were observed in the 30S head and platform, showing high variability in these regions. In summary, the structures resolved here showed several prominent distortion events in the decoding center and h17. The requirement for Mg2+ in ribosomes suggests that the conformational changes reported here are likely shared due to a lack of cellular Mg2+ in all domains of life.
PMID:36979501 | DOI:10.3390/biom13030566
FBA-PRCC. Partial Rank Correlation Coefficient (PRCC) Global Sensitivity Analysis (GSA) in Application to Constraint-Based Models
Biomolecules. 2023 Mar 9;13(3):500. doi: 10.3390/biom13030500.
ABSTRACT
BACKGROUND: Whole-genome models (GEMs) have become a versatile tool for systems biology, biotechnology, and medicine. GEMs created by automatic and semi-automatic approaches contain a lot of redundant reactions. At the same time, the nonlinearity of the model makes it difficult to evaluate the significance of the reaction for cell growth or metabolite production.
METHODS: We propose a new way to apply the global sensitivity analysis (GSA) to GEMs in a straightforward parallelizable fashion.
RESULTS: We have shown that Partial Rank Correlation Coefficient (PRCC) captures key steps in the metabolic network despite the network distance from the product synthesis reaction.
CONCLUSIONS: FBA-PRCC is a fast, interpretable, and reliable metric to identify the sign and magnitude of the reaction contribution to various cellular functions.
PMID:36979435 | DOI:10.3390/biom13030500
Altered Distribution of Unesterified Cholesterol among Lipoprotein Subfractions of Patients with Diabetes Mellitus Type 2
Biomolecules. 2023 Mar 8;13(3):497. doi: 10.3390/biom13030497.
ABSTRACT
Biomarkers are important tools to improve the early detection of patients at high risk for developing diabetes as well as the stratification of diabetic patients towards risks of complications. In addition to clinical variables, we analyzed 155 metabolic parameters in plasma samples of 51 healthy volunteers and 66 patients with diabetes using nuclear magnetic resonance (NMR) spectrometry. Upon elastic net analysis with lasso regression, we confirmed the independent associations of diabetes with branched-chain amino acids and lactate (both positive) as well as linoleic acid in plasma and HDL diameter (both inverse). In addition, we found the presence of diabetes independently associated with lower concentrations of free cholesterol in plasma but higher concentrations of free cholesterol in small HDL. Compared to plasmas of non-diabetic controls, plasmas of diabetic subjects contained lower absolute and relative concentrations of free cholesterol in all LDL and HDL subclasses except small HDL but higher absolute and relative concentrations of free cholesterol in all VLDL subclasses (except very small VLDL). These disbalances may reflect disturbances in the transfer of free cholesterol from VLDL to HDL during lipolysis and in the transfer of cell-derived cholesterol from small HDL via larger HDL to LDL.
PMID:36979432 | DOI:10.3390/biom13030497
Prognosis Risk Model Based on Pyroptosis-Related lncRNAs for Gastric Cancer
Biomolecules. 2023 Mar 3;13(3):469. doi: 10.3390/biom13030469.
ABSTRACT
Gastric cancer (GC) is a malignant tumor with a low survival rate, high recurrence rate, and poor prognosis. With respect to this, pyroptosis is a type of programmed cell death that can affect the occurrence and development of tumors. Indeed, long non-coding RNAs (lncRNAs) were broadly applied for the purposes of early diagnosis, treatment, and prognostic analysis in regard to cancer. Based on the association of these three purposes, we developed a novel prognosis risk model based on pyroptosis-related lncRNAs (PRlncRNAs) for GC. The PRlncRNAs were obtained via univariate and multivariate Cox regression in order to build the predictive signatures. The Kaplan-Meier and gene set enrichment analysis (GSEA) methods were used to evaluate the overall survival (OS) and functional differences between the high- and low-risk groups. Moreover, the correlation of the signatures with immune cell infiltration was determined through single-sample gene set enrichment analysis (ssGSEA). Finally, we analyzed this correlation with the treatment responses in the GC patients; then, we performed quantitative reverse transcription polymerase chain reactions (qRT-PCRs) in order to verify the risk model. The high-risk group received a worse performance in terms of prognosis and OS when compared to the low-risk group. With respect to this, the area under the receiver operating characteristic curve (ROC) was found to be 0.808. Through conducting the GSEA, it was found that the high-risk groups possessed a significant enrichment in terms of tumor-immunity pathways. Furthermore, the ssGSEA revealed that the predictive features possessed strong associations with immune cell infiltration in regard to GC. In addition, we highlighted that anti-immune checkpoint therapy, combined with conventional chemotherapy drugs, may be more suitable for high-risk patients. The expression levels of LINC01315, AP003392.1, AP000695.2, and HAGLR were significantly different between the GC cell lines and the normal cell lines. As such, the six PRlncRNAs could be regarded as important prognostic biomarkers for the purposes of subsequent diagnoses, treatments, prognostic predictions, and the mechanism research of GC.
PMID:36979404 | DOI:10.3390/biom13030469
A Database of Lung Cancer-Related Genes for the Identification of Subtype-Specific Prognostic Biomarkers
Biology (Basel). 2023 Feb 24;12(3):357. doi: 10.3390/biology12030357.
ABSTRACT
The molecular subtype is critical for accurate treatment and follow-up in patients with lung cancer; however, information regarding subtype-associated genes is dispersed among thousands of published studies. Systematic curation and cross-validation of the scientific literature would provide a solid foundation for comparative genetic studies of the major molecular subtypes of lung cancer. Here, we constructed a literature-based lung cancer gene database (LCGene). In the current release, we collected and curated 2507 unique human genes, including 2267 protein-coding and 240 non-coding genes from comprehensive manual examination of 10,960 PubMed article abstracts. Extensive annotations were added to aid identification of differentially expressed genes, potential gene editing sites, and non-coding gene regulation. For instance, we prepared 607 curated genes with CRISPR knockout information in 43 lung cancer cell lines. Further comparison of these implicated genes among different subtypes identified several subtype-specific genes with high mutational frequencies. Common tumor suppressors and oncogenes shared by lung adenocarcinoma and lung squamous cell carcinoma, for example, exhibited different mutational frequencies and prognostic features, suggesting the presence of subtype-specific biomarkers. Our retrospective analysis revealed 43 small cell lung cancer-specific genes. Moreover, 52 tumor suppressors and oncogenes shared by lung adenocarcinoma and squamous cell carcinoma confirmed the different molecular mechanisms of these two cancer subtypes. The subtype-based genetic differences, when combined, may provide insight into subtype-specific biomarkers for genetic testing.
PMID:36979050 | DOI:10.3390/biology12030357
Neural Field Continuum Limits and the Structure-Function Partitioning of Cognitive-Emotional Brain Networks
Biology (Basel). 2023 Feb 23;12(3):352. doi: 10.3390/biology12030352.
ABSTRACT
In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain network connectivity by eschewing neural field theories and physiologically derived constructs representative of neuronal plasticity. The absence of this content, which is so very important for understanding the dynamic structure-function embedding and partitioning of brains, diminishes the rich competitive and cooperative nature of neural networks and trivializes Pessoa's arguments, and similar arguments by other authors, on the phylogenetic and operational significance of an optimally integrated brain filled with variable-strength neural connections. Riemannian neuromanifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables, simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and performance benefits of embedded cognitive-emotional networks that optimally evolve between exotic classical and quantum computational phases, where matrix singularities and condensations produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of cognitive-emotional network functions and, in our new era of neuroscience, should be considered a critical aspect of proper brain organization and operation.
PMID:36979044 | DOI:10.3390/biology12030352
Bacterial Volatiles (mVOC) Emitted by the Phytopathogen <em>Erwinia amylovora</em> Promote <em>Arabidopsis thaliana</em> Growth and Oxidative Stress
Antioxidants (Basel). 2023 Feb 28;12(3):600. doi: 10.3390/antiox12030600.
ABSTRACT
Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.
PMID:36978848 | DOI:10.3390/antiox12030600
Statistical learning of protein elastic network from positional covariance matrix
Comput Struct Biotechnol J. 2023 Mar 28;21:2524-2535. doi: 10.1016/j.csbj.2023.03.033. eCollection 2023.
ABSTRACT
Positional fluctuation and covariance during protein dynamics are key observables for understanding the molecular origin of biological functions. A frequently employed potential energy function for describing protein structural variation at the coarse-gained level is elastic network model (ENM). A long-standing issue in biomolecular simulation is thus the parametrization of ENM spring constants from the components of positional covariance matrix (PCM). Based on sensitivity analysis of PCM, the direct-coupling statistics of each spring, which is a specific combination of position fluctuation and covariance, is found to exhibit prominent signal of parameter dependence. This finding provides the basis for devising the objective function and the scheme of running through the effective one-dimensional optimization of every spring by self-consistent iteration. Formal derivation of the positional covariance statistical learning (PCSL) method also motivates the necessary data regularization for stable calculations. Robust convergence of PCSL is achieved in taking an all-atom molecular dynamics trajectory or an ensemble of homologous structures as input data. The PCSL framework can also be generalized with mixed objective functions to capture specific property such as the residue flexibility profile. Such physical chemistry-based statistical learning thus provides a useful platform for integrating the mechanical information encoded in various experimental or computational data.
PMID:37095762 | PMC:PMC10121796 | DOI:10.1016/j.csbj.2023.03.033
Collateral activity of the CRISPR/RfxCas13d system in human cells
Commun Biol. 2023 Mar 28;6(1):334. doi: 10.1038/s42003-023-04708-2.
ABSTRACT
CRISPR/Cas13 systems are increasingly used for programmable targeting of RNAs. While Cas13 nucleases are capable of degrading both target RNAs and bystander RNAs in vitro and in bacteria, initial studies fail to detect collateral degradation of non-target RNAs in eukaryotic cells. Here we show that RfxCas13d, also known as CasRx, a widely used Cas13 system, can cause collateral transcriptome destruction when targeting abundant reporter RNA and endogenous RNAs, resulting in proliferation defect in target cells. While these results call for caution of using RfxCas13d for targeted RNA knockdown, we demonstrated that the collateral activity can be harnessed for selective depletion of a specific cell population defined by a marker RNA in an in vitro setting.
PMID:36977923 | DOI:10.1038/s42003-023-04708-2
NEWS: the 2023 Metabolomics publication awards
Metabolomics. 2023 Mar 29;19(4):27. doi: 10.1007/s11306-023-02000-2.
NO ABSTRACT
PMID:36977802 | DOI:10.1007/s11306-023-02000-2
Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2
Nat Commun. 2023 Mar 28;14(1):1733. doi: 10.1038/s41467-023-37254-w.
ABSTRACT
Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-μM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 μM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.
PMID:36977673 | DOI:10.1038/s41467-023-37254-w
Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity
Curr Biol. 2023 Mar 24:S0960-9822(23)00263-4. doi: 10.1016/j.cub.2023.02.073. Online ahead of print.
ABSTRACT
Neurons modify their transcriptomes in response to an animal's experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus, including its duration, magnitude of change, and absolute value, are encoded in the gene expression program in this single neuron type, and we identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis-regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
PMID:36977417 | DOI:10.1016/j.cub.2023.02.073
Genetic diseases: How the noise fits in
Curr Biol. 2023 Mar 27;33(6):R228-R230. doi: 10.1016/j.cub.2023.02.052.
ABSTRACT
Many disease-causing mutations can have mild or no effects in some people. This incomplete phenotype penetrance phenomenon is still poorly understood, but model animal studies now show that it is stochastic, with the outcome akin to flipping a coin. These findings can affect how genetic diseases are understood and treated.
PMID:36977385 | DOI:10.1016/j.cub.2023.02.052
New Phenylspirodrimanes from the Sponge-Associated Fungus <em>Stachybotrys chartarum</em> MUT 3308
Mar Drugs. 2023 Feb 21;21(3):135. doi: 10.3390/md21030135.
ABSTRACT
Two phenylspirodrimanes, never isolated before, stachybotrin J (1) and new stachybocin G (epi-stachybocin A) (2), along with the already reported stachybotrin I (3), stachybotrin H (4), stachybotrylactam (5), stachybotrylactam acetate (6), 2α-acetoxystachybotrylactam acetate (7), stachybotramide (8), chartarlactam B (9), and F1839-J (10) were isolated from the sponge-associated fungus Stachybotrys chartarum MUT 3308. Their structures were established based on extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses. Absolute configurations of the stereogenic centers of stachybotrin J (1), stachybocin G (2), and stachybotrin I (3), were determined by comparison of their experimental circular dichroism (CD) spectra with their time-dependent density functional theory (TD-DFT) circular dichroism (ECD) spectra. The putative structures of seventeen additional phenylspirodrimanes were proposed by analysis of their respective MS/MS spectra through a Feature-Based Molecular Networking approach. All the isolated compounds were evaluated for their cytotoxicity against five aggressive cancer cell lines (MP41, 786, 786R, CAL33, and CAL33RR), notably including two resistant human cancer cell lines (786R, CAL33RR), and compounds 5, 6, and 7 exhibited cytotoxicity with IC50 values in the range of 0.3-2.2 µM.
PMID:36976184 | DOI:10.3390/md21030135
Seasonal Phenology and Climate Associated Feeding Activity of Introduced <em>Marchalina hellenica</em> in Southeast Australia
Insects. 2023 Mar 21;14(3):305. doi: 10.3390/insects14030305.
ABSTRACT
Invasive insects pose an increasing risk to global agriculture, environmental stability, and public health. Giant pine scale (GPS), Marchalina hellenica Gennadius (Hemiptera: Marchalinidae), is a phloem feeding scale insect endemic to the Eastern Mediterranean Basin, where it primarily feeds on Pinus halepensis and other Pinaceae. In 2014, GPS was detected in the southeast of Melbourne, Victoria, Australia, infesting the novel host Pinus radiata. An eradication program was unsuccessful, and with this insect now established within the state, containment and management efforts are underway to stop its spread; however, there remains a need to understand the insect's phenology and behaviour in Australia to better inform control efforts. We documented the annual life cycle and seasonal fluctuations in activity of GPS in Australia over a 32 month period at two contrasting field sites. Onset and duration of life stages were comparable to seasons in Mediterranean conspecifics, although the results imply the timing of GPS life stage progression is broadening or accelerating. GPS density was higher in Australia compared to Mediterranean reports, possibly due to the absence of key natural predators, such as the silver fly, Neoleucopis kartliana Tanasijtshuk (Diptera, Chamaemyiidae). Insect density and honeydew production in the Australian GPS population studied varied among locations and between generations. Although insect activity was well explained by climate, conditions recorded inside infested bark fissures often provided the weakest explanation of GPS activity. Our findings suggest that GPS activity is strongly influenced by climate, and this may in part be related to changes in host quality. An improved understanding of how our changing climate is influencing the phenology of phloem feeding insects such as GPS will help with predictions as to where these insects are likely to flourish and assist with management programs for pest species.
PMID:36975990 | DOI:10.3390/insects14030305
Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock
Elife. 2023 Mar 28;12:e82364. doi: 10.7554/eLife.82364. Online ahead of print.
ABSTRACT
Biological age, distinct from an individual's chronological age, has been studied extensively through predictive aging clocks. However, these clocks have limited accuracy in short time-scales. Here we trained deep learning models on fundus images from the EyePACS dataset to predict individuals' chronological age. Our retinal aging clocking, 'eyeAge', predicted chronological age more accurately than other aging clocks (mean absolute error of 2.86 and 3.30 years on quality-filtered data from EyePACS and UK Biobank, respectively). Additionally, eyeAge was independent of blood marker-based measures of biological age, maintaining an all-cause mortality hazard ratio of 1.026 even when adjusted for phenotypic age. The individual-specific nature of eyeAge was reinforced via multiple GWAS hits in the UK Biobank cohort. The top GWAS locus was further validated via knockdown of the fly homolog, Alk, which slowed age-related decline in vision in flies. This study demonstrates the potential utility of a retinal aging clock for studying aging and age-related diseases and quantitatively measuring aging on very short time-scales, opening avenues for quick and actionable evaluation of gero-protective therapeutics.
PMID:36975205 | DOI:10.7554/eLife.82364
Soybean gene co-expression network analysis identifies two co-regulated gene modules associated with nodule formation and development
Mol Plant Pathol. 2023 Mar 28. doi: 10.1111/mpp.13327. Online ahead of print.
ABSTRACT
Gene co-expression network analysis is an efficient systems biology approach for the discovery of novel gene functions and trait-associated gene modules. To identify clusters of functionally related genes involved in soybean nodule formation and development, we performed a weighted gene co-expression network analysis. Two nodule-specific modules (NSM-1 and NSM-2, containing 304 and 203 genes, respectively) were identified. The NSM-1 gene promoters were significantly enriched in cis-binding elements for ERF, MYB, and C2H2-type zinc transcription factors, whereas NSM-2 gene promoters were enriched in cis-binding elements for TCP, bZIP, and bHLH transcription factors, suggesting a role of these regulatory factors in the transcriptional activation of nodule co-expressed genes. The co-expressed gene modules included genes with potential novel roles in nodulation, including those involved in xylem development, transmembrane transport, the ethylene signalling pathway, cytoskeleton organization, cytokinesis and regulation of the cell cycle, regulation of meristem initiation and growth, transcriptional regulation, DNA methylation, and histone modifications. Functional analysis of two co-expressed genes using TILLING mutants provided novel insight into the involvement of unsaturated fatty acid biosynthesis and folate metabolism in nodule formation and development. The identified gene co-expression modules provide valuable resources for further functional genomics studies to dissect the genetic basis of nodule formation and development in soybean.
PMID:36975024 | DOI:10.1111/mpp.13327
Evidence for acoustic discrimination in lemurs: A playback study on wild indris <em>Indri indri</em>
Curr Zool. 2022 Feb 15;69(1):41-49. doi: 10.1093/cz/zoac009. eCollection 2023 Feb.
ABSTRACT
Indris Indri indri are group-living lemurs that occupy stable territories over several years and perform remarkable long-distance vocal displays. Vocal exchanges between long-term territory neighbors may contribute to assessing reciprocal resource-holding potentials, thus adaptively reducing the costs of territorial defense by limiting aggressive escalation. Previous work showed that indris' songs show distinctive acoustic features at individual and group level. However, the possibility that indris use such cues for individual or group-level recognition has never been investigated experimentally. We conducted a playback experiment to test whether indris discriminate between familiar and nonfamiliar songs. Our rationale lies in the hypothesis of the dear enemy phenomenon, which predicts that territorial animals will show reduced aggression levels toward familiar neighbors compared with novel rivals. We played back stimulus recordings to wild indris from their territory boundaries and examined their responses in terms of vocal and behavioral indicators of willingness to engage in a fight. In line with our predictions, focal animals responded more rapidly and approached more often the speaker in response to playback stimuli of nonfamiliar individuals than to stimuli of neighboring groups. These results indicate that indris can discriminate between different classes of intruders based on distinctive acoustic features of their song choruses. We suggest that increased aggression directed toward unfamiliar intruders may be explained by higher threat levels associated with dispersal and group formation dynamics. We further discuss the relevance of these findings in a strepsirrhine primate model for comparative studies of vocal communication and sociality.
PMID:36974154 | PMC:PMC10039182 | DOI:10.1093/cz/zoac009