Systems Biology
Validating the female fertility estimated breeding value in Australian commercial dairy herds
J Dairy Sci. 2023 Mar 7:S0022-0302(23)00099-1. doi: 10.3168/jds.2022-21955. Online ahead of print.
ABSTRACT
We conducted a retrospective cohort study to validate the efficacy of the Australian multitrait fertility estimated breeding value (EBV). We did this by determining its associations with phenotypic measures of reproductive performance (i.e., submission rate, first service conception rate, and early calving). Our secondary aim was to report the associations between these reproductive outcomes and management and climate-related factors hypothesized to affect fertility. Our study population included 38 pasture-based dairy herds from the northern Victorian irrigation region in Australia. We collected records for 86,974 cows with 219,156 lactations and 438,578 mating events from the date on which managers started herd recording until December 2016, comprising both fertility-related data such as insemination records, calving dates, and pregnancy test results, and systems-related data such as production, herd size, and calving pattern. We also collected hourly data from 2004 to 2017 from the closest available weather station to account for climate-related factors (i.e., temperature humidity index; THI). Multilevel Cox proportional hazard models were used to analyze time-to-event outcomes (days to first service, days to cow calving following the planned herd calving start date), and multilevel logistic regression models for binomial outcomes (conception to first service) in the Holstein-Friesian and Jersey breeds. A 1-unit increase in daughter fertility EBV was associated with a 5.4 and 8.2% increase in the daily hazard of calving in the Holstein-Friesian and Jersey breeds respectively. These are relative increases (i.e., a Holstein-Friesian herd with a 60% 6-wk in-calf rate would see an improvement to 63.2% with a 1-unit increase in herd fertility EBV). Similar results were obtained for submission and conception rate. Associations between 120-d milk yield and reproductive outcome were complicated by interactions with 120-d protein percentage and calving age, depending on the breed and outcome. In general, we found that the reproductive performance of high milk-yielding animals deteriorated faster with age than low milk-yielding animals, and high protein percentage exacerbated the differences between low and high milk-yielding animals. Climate-related factors were also associated with fertility, with a 1-unit increase in maximum THI decreasing first service conception rate by 1.2% for Holstein-Friesians but having no statistically significant association in the Jersey breed. However, THI had a negative association in both breeds on the daily hazard of calving. Our study validates the efficacy of the daughter fertility EBV for improving herd reproductive performance and identifies significant associations between 120-d milk and protein yields and THI on the fertility of Australian dairy cows.
PMID:36894422 | DOI:10.3168/jds.2022-21955
Differences in uterine and serum metabolome associated with metritis in dairy cows
J Dairy Sci. 2023 Mar 7:S0022-0302(23)00108-X. doi: 10.3168/jds.2022-22552. Online ahead of print.
ABSTRACT
Objectives were to evaluate differences in the uterine and serum metabolomes associated with metritis in dairy cows. Vaginal discharge was evaluated using a Metricheck device (Simcro) at 5, 7, and 11 d in milk (DIM; herd 1) or 4, 6, 8, 10, and 12 DIM (herd 2). Cows with reddish or brownish, watery, and fetid discharge were diagnosed with metritis (n = 24). Cows with metritis were paired with herdmates without metritis (i.e., clear mucous vaginal discharge or clear lochia with ≤50% of pus) based on DIM and parity (n = 24). Day of metritis diagnosis was considered study d 0. All cows diagnosed with metritis received antimicrobial therapy. The metabolome of uterine lavage collected on d 0 and 5, and serum samples collected on d 0 were evaluated using untargeted gas chromatography time-of-flight mass spectrometry. Normalized data were subjected to multivariate canonical analysis of population using the MultBiplotR and MixOmics packages in R Studio. Univariate analyses including t-test, principal component analyses, partial least squares discriminant analyses, and pathway analyses were conducted using Metaboanalyst. The uterine metabolome differed between cows with and without metritis on d 0. Differences in the uterine metabolome associated with metritis on d 0 were related to the metabolism of butanoate, amino acids (i.e., glycine, serine, threonine, alanine, aspartate, and glutamate), glycolysis and gluconeogenesis, and the tricarboxylic acid cycle. No differences in the serum metabolome were observed between cows diagnosed with metritis and counterparts without metritis on d 0. Similarly, no differences in uterine metabolome were observed between cows with metritis and counterparts not diagnosed with metritis on d 5. These results indicate that the establishment of metritis in dairy cows is associated with local disturbances in amino acid, lipid, and carbohydrate metabolism in the uterus. The lack of differences in the uterine metabolome on d 5 indicates that processes implicated with the disease are reestablished by d 5 after diagnosis and treatment.
PMID:36894419 | DOI:10.3168/jds.2022-22552
Analysis of context-specific KRAS-effector (sub)complexes in Caco-2 cells
Life Sci Alliance. 2023 Mar 9;6(5):e202201670. doi: 10.26508/lsa.202201670. Print 2023 May.
ABSTRACT
Ras is a key switch controlling cell behavior. In the GTP-bound form, Ras interacts with numerous effectors in a mutually exclusive manner, where individual Ras-effectors are likely part of larger cellular (sub)complexes. The molecular details of these (sub)complexes and their alteration in specific contexts are not understood. Focusing on KRAS, we performed affinity purification (AP)-mass spectrometry (MS) experiments of exogenously expressed FLAG-KRAS WT and three oncogenic mutants ("genetic contexts") in the human Caco-2 cell line, each exposed to 11 different culture media ("culture contexts") that mimic conditions relevant in the colon and colorectal cancer. We identified four effectors present in complex with KRAS in all genetic and growth contexts ("context-general effectors"). Seven effectors are found in KRAS complexes in only some contexts ("context-specific effectors"). Analyzing all interactors in complex with KRAS per condition, we find that the culture contexts had a larger impact on interaction rewiring than genetic contexts. We investigated how changes in the interactome impact functional outcomes and created a Shiny app for interactive visualization. We validated some of the functional differences in metabolism and proliferation. Finally, we used networks to evaluate how KRAS-effectors are involved in the modulation of functions by random walk analyses of effector-mediated (sub)complexes. Altogether, our work shows the impact of environmental contexts on network rewiring, which provides insights into tissue-specific signaling mechanisms. This may also explain why KRAS oncogenic mutants may be causing cancer only in specific tissues despite KRAS being expressed in most cells and tissues.
PMID:36894174 | DOI:10.26508/lsa.202201670
Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway
Cell Host Microbe. 2023 Mar 8;31(3):373-388.e10. doi: 10.1016/j.chom.2023.02.002.
ABSTRACT
The decision whether endosomes enter the degradative or recycling pathway in mammalian cells is of fundamental importance for pathogen killing, and its malfunctioning has pathological consequences. We discovered that human p11 is a critical factor for this decision. The HscA protein present on the conidial surface of the human-pathogenic fungus Aspergillus fumigatus anchors p11 on conidia-containing phagosomes (PSs), excludes the PS maturation mediator Rab7, and triggers binding of exocytosis mediators Rab11 and Sec15. This reprogramming redirects PSs to the non-degradative pathway, allowing A. fumigatus to escape cells by outgrowth and expulsion as well as transfer of conidia between cells. The clinical relevance is supported by the identification of a single nucleotide polymorphism in the non-coding region of the S100A10 (p11) gene that affects mRNA and protein expression in response to A. fumigatus and is associated with protection against invasive pulmonary aspergillosis. These findings reveal the role of p11 in mediating fungal PS evasion.
PMID:36893734 | DOI:10.1016/j.chom.2023.02.002
High-Density Guide RNA Tiling and Machine Learning for Designing CRISPR Interference in <em>Synechococcus</em> sp. PCC 7002
ACS Synth Biol. 2023 Mar 9. doi: 10.1021/acssynbio.2c00653. Online ahead of print.
ABSTRACT
While CRISPRi was previously established in Synechococcus sp. PCC 7002 (hereafter 7002), the design principles for guide RNA (gRNA) effectiveness remain largely unknown. Here, 76 strains of 7002 were constructed with gRNAs targeting three reporter systems to evaluate features that impact gRNA efficiency. Correlation analysis of the data revealed that important features of gRNA design include the position relative to the start codon, GC content, protospacer adjacent motif (PAM) site, minimum free energy, and targeted DNA strand. Unexpectedly, some gRNAs targeting upstream of the promoter region showed small but significant increases in reporter expression, and gRNAs targeting the terminator region showed greater repression than gRNAs targeting the 3' end of the coding sequence. Machine learning algorithms enabled prediction of gRNA effectiveness, with Random Forest having the best performance across all training sets. This study demonstrates that high-density gRNA data and machine learning can improve gRNA design for tuning gene expression in 7002.
PMID:36893454 | DOI:10.1021/acssynbio.2c00653
Guided-deconvolution for correlative light and electron microscopy
PLoS One. 2023 Mar 9;18(3):e0282803. doi: 10.1371/journal.pone.0282803. eCollection 2023.
ABSTRACT
Correlative light and electron microscopy is a powerful tool to study the internal structure of cells. It combines the mutual benefit of correlating light (LM) and electron (EM) microscopy information. The EM images only contain contrast information. Therefore, some of the detailed structures cannot be specified from these images alone, especially when different cell organelle are contacted. However, the classical approach of overlaying LM onto EM images to assign functional to structural information is hampered by the large discrepancy in structural detail visible in the LM images. This paper aims at investigating an optimized approach which we call EM-guided deconvolution. This applies to living cells structures before fixation as well as previously fixed sample. It attempts to automatically assign fluorescence-labeled structures to structural details visible in the EM image to bridge the gaps in both resolution and specificity between the two imaging modes. We tested our approach on simulations, correlative data of multi-color beads and previously published data of biological samples.
PMID:36893111 | DOI:10.1371/journal.pone.0282803
Interrogating the precancerous evolution of pathway dysfunction in lung squamous cell carcinoma using XTABLE
Elife. 2023 Mar 9;12:e77507. doi: 10.7554/eLife.77507. Online ahead of print.
ABSTRACT
Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE, an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two and multiple group comparisons, interrogation of genes of interests and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.
PMID:36892933 | DOI:10.7554/eLife.77507
Reduced Glyphosate Movement and Mutation of the <em>EPSPS</em> Gene (Pro106Ser) Endow Resistance in <em>Conyza canadensis</em> Harvested in Mexico
J Agric Food Chem. 2023 Mar 9. doi: 10.1021/acs.jafc.2c07833. Online ahead of print.
ABSTRACT
Glyphosate has been the most widely used herbicide for decades providing a unique tool, alone or in mixtures, to control weeds on citrus in Veracruz. Conyza canadensis has developed glyphosate resistance for the first time in Mexico. The level and mechanisms of resistance of four resistant populations Rs (R1, R2, R3, and R4) were studied and compared with that of a susceptible population (S). Resistance factor levels showed two moderately resistant populations (R2 and R3) and two highly resistant populations (R1 and R4). Glyphosate translocation through leaves to roots was ∼2.8 times higher in the S population than in the four R populations. A mutation (Pro106Ser) in the EPSPS2 gene was identified in the R1 and R4 populations. Mutation in the target site associated with reduced translocation is involved in increased glyphosate resistance in the R1 and R4 populations; whereas for the R2 and R3 populations, it was only mediated by reduced translocation. This is the first study of glyphosate resistance in C. canadensis from Mexico in which the resistance mechanisms involved are described in detail and control alternatives are proposed.
PMID:36892583 | DOI:10.1021/acs.jafc.2c07833
Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma
Elife. 2023 Mar 9;12:e76520. doi: 10.7554/eLife.76520.
ABSTRACT
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
PMID:36892272 | DOI:10.7554/eLife.76520
Efficacy and Safety of Tyrosine Kinase Inhibitors Alone or Combination with Programmed Death-1 Inhibitors in Treating of Hepatitis C-Related Hepatocellular Carcinoma
J Hepatocell Carcinoma. 2023 Mar 2;10:357-367. doi: 10.2147/JHC.S392347. eCollection 2023.
ABSTRACT
BACKGROUND: Tyrosine kinase inhibitors (TKI) combined with programmed cell death-1 (PD-1) inhibitor is a potential treatment modality for patients with HCV-related unresectable hepatocellular carcinoma (uHCC).
METHODS: The participants of the present work included the patients having HCV-related uHCC who were treated with TKI monotherapy (TKI group) or TKI combined with PD-1 inhibitors therapy (combination group) in our center between June 2018 and June 2021. In addition, the patients were classified into RNA-positive and RNA-negative groups based on whether or not the baseline HCV RNA was detectable. The overall survival (OS) was used as the primary efficacy endpoint, while progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) were used as secondary endpoints. The adverse events were recorded and evaluated.
RESULTS: Among the 67 patients contained this work, 43 patients were classified into the TKI group, while 24 patients formed the combination group. In relative to the TKI group, the combination group presented notably better median OS (21 months vs 13 months, p = 0.043) and median PFS (8 months vs 5 months, p = 0.005). No evident differences were observed between the two groups in terms of the DCR (58.1% vs 79.2%, p = 0.080), ORR (13.9% vs 25.0%, p = 0.425) and the incidence of grade 3-4 adverse events (34.8% vs 33.3%, p = 1.000). In addition, there existed no obvious difference between the RNA-positive group and RNA-negative group in terms of median OS (14 months vs 19 months, p = 0.578) and median PFS (4 months vs 6 months, p = 0.238).
CONCLUSION: The patients having HCV-related uHCC after being treated with the TKI and PD-1 inhibitor combination therapy exhibited a better prognosis and manageable toxicity compared to the patients who underwent TKI monotherapy.
PMID:36891505 | PMC:PMC9987323 | DOI:10.2147/JHC.S392347
The mast cell: A Janus in kidney transplants
Front Immunol. 2023 Feb 20;14:1122409. doi: 10.3389/fimmu.2023.1122409. eCollection 2023.
ABSTRACT
Mast cells (MCs) are innate immune cells with a versatile set of functionalities, enabling them to orchestrate immune responses in various ways. Aside from their known role in allergy, they also partake in both allograft tolerance and rejection through interaction with regulatory T cells, effector T cells, B cells and degranulation of cytokines and other mediators. MC mediators have both pro- and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways. Paradoxically, they are also seen as having potential protective effects in tissue remodeling post-injury. This manuscript elaborates on current knowledge of the functional diversity of mast cells in kidney transplants, combining theory and practice into a MC model stipulating both protective and harmful capabilities in the kidney transplant setting.
PMID:36891297 | PMC:PMC9986315 | DOI:10.3389/fimmu.2023.1122409
A mouthwash formulated with o-cymen-5-ol and zinc chloride specifically targets potential pathogens without impairing the native oral microbiome in healthy individuals
J Oral Microbiol. 2023 Mar 3;15(1):2185962. doi: 10.1080/20002297.2023.2185962. eCollection 2023.
ABSTRACT
BACKGROUND: Many antimicrobial compounds in mouthwashes can have a negative impact on the oral microbiome. O-cymen-5-ol, a compound derived from a phytochemical, has a targeted mode of action and is being used as an alternative. However, its effect on the native oral microbiome is unknown.
AIM: To assess the effect of a mouthwash formulated with o-cymen-5-ol and zinc chloride on the oral microbiome of healthy individuals.
METHODS: A mouthwash formulated with o-cymen-5-ol and zinc chloride was administered to a cohort of 51 volunteers for 14 days, while another cohort of 49 volunteers received a placebo. The evolution of the oral microbiome in both groups was analysed using a metataxonomic approach.
RESULTS: Analysis of the oral microbiome showed that the mouthwash selectively targeted potential oral pathogens while maintaining the integrity of the rest of the microbiome. Specifically, the relative abundance of several potentially pathogenic bacterial taxa, namely Fusobacteriota, Prevotella, Actinomyces, Granulicatella, Abiotrophia, Lautropia, Lachnoanaerobaculum, Eubacterium (nodatum group) and Absconditabacteriales (SR1) decreased, while the growth of Rothia, a nitrate-reducing bacterium beneficial for blood pressure, was stimulated.
CONCLUSIONS: The use of o-cymen-5-ol and zinc chloride as antimicrobial agents in oral mouthwashes is a valuable alternative to classical antimicrobial agents.
PMID:36891194 | PMC:PMC9987754 | DOI:10.1080/20002297.2023.2185962
Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis
Front Oncol. 2023 Feb 20;13:1010563. doi: 10.3389/fonc.2023.1010563. eCollection 2023.
ABSTRACT
INTRODUCTION: Alterations in expression and activity of human receptor tyrosine kinases (RTKs) are associated with cancer progression and in response to therapeutic intervention.
METHODS: Thus, protein abundance of 21 RTKs was assessed in 15 healthy and 18 cancerous liver samples [2 primary and 16 colorectal cancer liver metastasis (CRLM)] matched with non-tumorous (histologically normal) tissue, by a validated QconCAT-based targeted proteomic approach.
RESULTS: It was demonstrated, for the first time, that the abundance of EGFR, INSR, VGFR3 and AXL, is lower in tumours relative to livers from healthy individuals whilst the opposite is true for IGF1R. EPHA2 was upregulated in tumour compared with histologically normal tissue surrounding it. PGFRB levels were higher in tumours relative to both histologically normal tissue surrounding tumour and tissues taken from healthy individuals. The abundances of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, ERBB2, NTRK2, TIE2, RET, and MET were, however, comparable in all samples. Statistically significant, but moderate correlations were observed (Rs > 0.50, p < 0.05) for EGFR with INSR and KIT. FGFR2 correlated with PGFRA and VGFR1 with NTRK2 in healthy livers. In non-tumorous (histologically normal) tissues from cancer patients, there were correlations between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA (p < 0.05). EGFR correlated with INSR, ERBB2, KIT and EGFR, and KIT with AXL and FGFR2. In tumours, CSF1R correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. Sex, liver lobe and body mass index of donors had no impact on the abundance of RTKs, although donor age showed some correlations. RET was the most abundant of these kinases in non-tumorous tissues (~35%), while PGFRB was the most abundant RTK in tumours (~47%). Several correlations were also observed between the abundance of RTKs and proteins relevant to drug pharmacokinetics (enzymes and transporters).
DISCUSSION: DiscussionThis study quantified perturbation to the abundance of several RTKs in cancer and the value generated in this study can be used as input to systems biology models defining liver cancer metastases and biomarkers of its progression.
PMID:36890818 | PMC:PMC9986493 | DOI:10.3389/fonc.2023.1010563
The giant diploid faba genome unlocks variation in a global protein crop
Nature. 2023 Mar 8. doi: 10.1038/s41586-023-05791-5. Online ahead of print.
ABSTRACT
Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.
PMID:36890232 | DOI:10.1038/s41586-023-05791-5
Neoantigen-targeted CD8<sup>+</sup> T cell responses with PD-1 blockade therapy
Nature. 2023 Mar 8. doi: 10.1038/s41586-023-05787-1. Online ahead of print.
ABSTRACT
Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.
PMID:36890230 | DOI:10.1038/s41586-023-05787-1
Targeting synthetic lethal paralogs in cancer
Trends Cancer. 2023 Mar 6:S2405-8033(23)00022-5. doi: 10.1016/j.trecan.2023.02.002. Online ahead of print.
ABSTRACT
Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.
PMID:36890003 | DOI:10.1016/j.trecan.2023.02.002
PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene
Metab Eng. 2023 Mar 6:S1096-7176(23)00041-1. doi: 10.1016/j.ymben.2023.03.003. Online ahead of print.
ABSTRACT
Food wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth. This is especially important for food waste hydrolysates, which have a high nutrient content but are unstable due to batch, sources, or storage conditions. These make them unsuitable for polyhydroxyalkanoate (PHA) production, which usually requires limitation on either nitrogen, phosphorous, or sulfur. In this study, H. bluephagenesis was constructed by overexpressing the PHA synthesis operon phaCABCn (cloned from Cupriavidus necator) controlled by the essential gene ompW (encoding outer membrane protein W) promoter and the constitutive porin promoter that are continuously expressed at high levels throughout the cell growth process, allowing poly(3-hydroxybutyrate) (PHB) production to proceed in nutrient-rich (also nitrogen-rich) food waste hydrolysates of various sources. The recombinant H. bluephagenesis termed WZY278 generated 22 g L-1 cell dry weight (CDW) containing 80 wt% PHB when cultured in food waste hydrolysates in shake flasks, and it was grown to 70 g L-1 CDW containing 80 wt% PHB in a 7-L bioreactor via fed-batch cultivation. Thus, unsterilizable food waste hydrolysates can become nutrient-rich substrates for PHB production by H. bluephagenesis able to be grown contamination-free under open conditions.
PMID:36889504 | DOI:10.1016/j.ymben.2023.03.003
Sloppiness: Fundamental study, new formalism and its application in model assessment
PLoS One. 2023 Mar 8;18(3):e0282609. doi: 10.1371/journal.pone.0282609. eCollection 2023.
ABSTRACT
Computational modelling of biological processes poses multiple challenges in each stage of the modelling exercise. Some significant challenges include identifiability, precisely estimating parameters from limited data, informative experiments and anisotropic sensitivity in the parameter space. One of these challenges' crucial but inconspicuous sources is the possible presence of large regions in the parameter space over which model predictions are nearly identical. This property, known as sloppiness, has been reasonably well-addressed in the past decade, studying its possible impacts and remedies. However, certain critical unanswered questions concerning sloppiness, particularly related to its quantification and practical implications in various stages of system identification, still prevail. In this work, we systematically examine sloppiness at a fundamental level and formalise two new theoretical definitions of sloppiness. Using the proposed definitions, we establish a mathematical relationship between the parameter estimates' precision and sloppiness in linear predictors. Further, we develop a novel computational method and a visual tool to assess the goodness of a model around a point in parameter space by identifying local structural identifiability and sloppiness and finding the most sensitive and least sensitive parameters for non-infinitesimal perturbations. We demonstrate the working of our method in benchmark systems biology models of various complexities. The pharmacokinetic HIV infection model analysis identified a new set of biologically relevant parameters that can be used to control the free virus in an active HIV infection.
PMID:36888634 | DOI:10.1371/journal.pone.0282609
A mobile target
Elife. 2023 Mar 8;12:e86697. doi: 10.7554/eLife.86697.
ABSTRACT
The global spread of antibiotic resistance could be due to a number of factors, and not just the overuse of antibiotics in agriculture and medicine as previously thought.
PMID:36884273 | DOI:10.7554/eLife.86697
T-Toxin Virulence Genes: Unconnected Dots in a Sea of Repeats
mBio. 2023 Mar 8:e0026123. doi: 10.1128/mbio.00261-23. Online ahead of print.
ABSTRACT
In 1970, the Southern Corn Leaf Blight epidemic ravaged U.S. fields to great economic loss. The outbreak was caused by never-before-seen, supervirulent, Race T of the fungus Cochliobolus heterostrophus. The functional difference between Race T and O, the previously known, far less aggressive strain, is production of T-toxin, a host-selective polyketide. Supervirulence is associated with ~1 Mb of Race T-specific DNA; only a fraction encodes T-toxin biosynthetic genes (Tox1). Tox1 is genetically and physically complex, with unlinked loci (Tox1A, Tox1B) genetically inseparable from breakpoints of a Race O reciprocal translocation that generated hybrid Race T chromosomes. Previously, we identified 10 genes for T-toxin biosynthesis. Unfortunately, high-depth, short-read sequencing placed these genes on four small, unconnected scaffolds surrounded by repeated A+T rich sequence, concealing context. To sort out Tox1 topology and pinpoint the hypothetical Race O translocation breakpoints corresponding to Race T-specific insertions, we undertook PacBio long-read sequencing which revealed Tox1 gene arrangement and the breakpoints. Six Tox1A genes are arranged as three small islands in a Race T-specific sea (~634 kb) of repeats. Four Tox1B genes are linked, on a large loop of Race T-specific DNA (~210 kb). The race O breakpoints are short sequences of race O-specific DNA; corresponding positions in race T are large insertions of race T-specific, A+T rich DNA, often with similarity to transposable (predominantly Gypsy) elements. Nearby, are 'Voyager Starship' elements and DUF proteins. These elements may have facilitated Tox1 integration into progenitor Race O and promoted large scale recombination resulting in race T. IMPORTANCE In 1970 a corn disease epidemic ravaged fields in the United States to great economic loss. The outbreak was caused by a never-before seen, supervirulent strain of the fungal pathogen Cochliobolus heterostrophus. This was a plant disease epidemic, however, the current COVID-19 pandemic of humans is a stark reminder that novel, highly virulent, pathogens evolve with devastating consequences, no matter what the host-animal, plant, or other organism. Long read DNA sequencing technology allowed in depth structural comparisons between the sole, previously known, much less aggressive, version of the pathogen and the supervirulent version and revealed, in meticulous detail, the structure of the unique virulence-causing DNA. These data are foundational for future analysis of mechanisms of DNA acquisition from a foreign source.
PMID:36883814 | DOI:10.1128/mbio.00261-23