Systems Biology

The giant diploid faba genome unlocks variation in a global protein crop

Wed, 2023-03-08 06:00

Nature. 2023 Mar 8. doi: 10.1038/s41586-023-05791-5. Online ahead of print.

ABSTRACT

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.

PMID:36890232 | DOI:10.1038/s41586-023-05791-5

Categories: Literature Watch

Neoantigen-targeted CD8<sup>+</sup> T cell responses with PD-1 blockade therapy

Wed, 2023-03-08 06:00

Nature. 2023 Mar 8. doi: 10.1038/s41586-023-05787-1. Online ahead of print.

ABSTRACT

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.

PMID:36890230 | DOI:10.1038/s41586-023-05787-1

Categories: Literature Watch

Targeting synthetic lethal paralogs in cancer

Wed, 2023-03-08 06:00

Trends Cancer. 2023 Mar 6:S2405-8033(23)00022-5. doi: 10.1016/j.trecan.2023.02.002. Online ahead of print.

ABSTRACT

Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.

PMID:36890003 | DOI:10.1016/j.trecan.2023.02.002

Categories: Literature Watch

PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene

Wed, 2023-03-08 06:00

Metab Eng. 2023 Mar 6:S1096-7176(23)00041-1. doi: 10.1016/j.ymben.2023.03.003. Online ahead of print.

ABSTRACT

Food wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth. This is especially important for food waste hydrolysates, which have a high nutrient content but are unstable due to batch, sources, or storage conditions. These make them unsuitable for polyhydroxyalkanoate (PHA) production, which usually requires limitation on either nitrogen, phosphorous, or sulfur. In this study, H. bluephagenesis was constructed by overexpressing the PHA synthesis operon phaCABCn (cloned from Cupriavidus necator) controlled by the essential gene ompW (encoding outer membrane protein W) promoter and the constitutive porin promoter that are continuously expressed at high levels throughout the cell growth process, allowing poly(3-hydroxybutyrate) (PHB) production to proceed in nutrient-rich (also nitrogen-rich) food waste hydrolysates of various sources. The recombinant H. bluephagenesis termed WZY278 generated 22 g L-1 cell dry weight (CDW) containing 80 wt% PHB when cultured in food waste hydrolysates in shake flasks, and it was grown to 70 g L-1 CDW containing 80 wt% PHB in a 7-L bioreactor via fed-batch cultivation. Thus, unsterilizable food waste hydrolysates can become nutrient-rich substrates for PHB production by H. bluephagenesis able to be grown contamination-free under open conditions.

PMID:36889504 | DOI:10.1016/j.ymben.2023.03.003

Categories: Literature Watch

Sloppiness: Fundamental study, new formalism and its application in model assessment

Wed, 2023-03-08 06:00

PLoS One. 2023 Mar 8;18(3):e0282609. doi: 10.1371/journal.pone.0282609. eCollection 2023.

ABSTRACT

Computational modelling of biological processes poses multiple challenges in each stage of the modelling exercise. Some significant challenges include identifiability, precisely estimating parameters from limited data, informative experiments and anisotropic sensitivity in the parameter space. One of these challenges' crucial but inconspicuous sources is the possible presence of large regions in the parameter space over which model predictions are nearly identical. This property, known as sloppiness, has been reasonably well-addressed in the past decade, studying its possible impacts and remedies. However, certain critical unanswered questions concerning sloppiness, particularly related to its quantification and practical implications in various stages of system identification, still prevail. In this work, we systematically examine sloppiness at a fundamental level and formalise two new theoretical definitions of sloppiness. Using the proposed definitions, we establish a mathematical relationship between the parameter estimates' precision and sloppiness in linear predictors. Further, we develop a novel computational method and a visual tool to assess the goodness of a model around a point in parameter space by identifying local structural identifiability and sloppiness and finding the most sensitive and least sensitive parameters for non-infinitesimal perturbations. We demonstrate the working of our method in benchmark systems biology models of various complexities. The pharmacokinetic HIV infection model analysis identified a new set of biologically relevant parameters that can be used to control the free virus in an active HIV infection.

PMID:36888634 | DOI:10.1371/journal.pone.0282609

Categories: Literature Watch

A mobile target

Wed, 2023-03-08 06:00

Elife. 2023 Mar 8;12:e86697. doi: 10.7554/eLife.86697.

ABSTRACT

The global spread of antibiotic resistance could be due to a number of factors, and not just the overuse of antibiotics in agriculture and medicine as previously thought.

PMID:36884273 | DOI:10.7554/eLife.86697

Categories: Literature Watch

T-Toxin Virulence Genes: Unconnected Dots in a Sea of Repeats

Wed, 2023-03-08 06:00

mBio. 2023 Mar 8:e0026123. doi: 10.1128/mbio.00261-23. Online ahead of print.

ABSTRACT

In 1970, the Southern Corn Leaf Blight epidemic ravaged U.S. fields to great economic loss. The outbreak was caused by never-before-seen, supervirulent, Race T of the fungus Cochliobolus heterostrophus. The functional difference between Race T and O, the previously known, far less aggressive strain, is production of T-toxin, a host-selective polyketide. Supervirulence is associated with ~1 Mb of Race T-specific DNA; only a fraction encodes T-toxin biosynthetic genes (Tox1). Tox1 is genetically and physically complex, with unlinked loci (Tox1A, Tox1B) genetically inseparable from breakpoints of a Race O reciprocal translocation that generated hybrid Race T chromosomes. Previously, we identified 10 genes for T-toxin biosynthesis. Unfortunately, high-depth, short-read sequencing placed these genes on four small, unconnected scaffolds surrounded by repeated A+T rich sequence, concealing context. To sort out Tox1 topology and pinpoint the hypothetical Race O translocation breakpoints corresponding to Race T-specific insertions, we undertook PacBio long-read sequencing which revealed Tox1 gene arrangement and the breakpoints. Six Tox1A genes are arranged as three small islands in a Race T-specific sea (~634 kb) of repeats. Four Tox1B genes are linked, on a large loop of Race T-specific DNA (~210 kb). The race O breakpoints are short sequences of race O-specific DNA; corresponding positions in race T are large insertions of race T-specific, A+T rich DNA, often with similarity to transposable (predominantly Gypsy) elements. Nearby, are 'Voyager Starship' elements and DUF proteins. These elements may have facilitated Tox1 integration into progenitor Race O and promoted large scale recombination resulting in race T. IMPORTANCE In 1970 a corn disease epidemic ravaged fields in the United States to great economic loss. The outbreak was caused by a never-before seen, supervirulent strain of the fungal pathogen Cochliobolus heterostrophus. This was a plant disease epidemic, however, the current COVID-19 pandemic of humans is a stark reminder that novel, highly virulent, pathogens evolve with devastating consequences, no matter what the host-animal, plant, or other organism. Long read DNA sequencing technology allowed in depth structural comparisons between the sole, previously known, much less aggressive, version of the pathogen and the supervirulent version and revealed, in meticulous detail, the structure of the unique virulence-causing DNA. These data are foundational for future analysis of mechanisms of DNA acquisition from a foreign source.

PMID:36883814 | DOI:10.1128/mbio.00261-23

Categories: Literature Watch

Polyacrylamide gel as a new embedding medium for the enhancement of metabolite MALDI imaging

Wed, 2023-03-08 06:00

Chem Commun (Camb). 2023 Mar 8. doi: 10.1039/d2cc07075h. Online ahead of print.

ABSTRACT

In this study, polyacrylamide gel (PAAG) was successfully used as a new embedding medium to provide the more effective maintenance of biological tissues during the sectioning process, enhancing the tissue imaging of metabolites via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, PAAG, agarose, gelatin, optimal cutting temperature compound (OCT), and ice media were used to embed rat liver and Atlantic salmon (Salmo salar) eyeball samples. These embedded tissues were then sectioned into thin slices and thaw-mounted on conductive microscope glass slides for MALDI-MSI detection to evaluate the embedding effects. The results showed that PAAG embedding has characteristics superior to those of commonly-used embedding media (e.g., agarose, gelatin, OCT, and ice) with the advantages of one-step operation without heating, a better performance of morphology maintenance, the absence of PAAG polymer-ion-related interference below m/z 2000, and the more efficient in situ ionization of metabolites, providing a significant enhancement of both the numbers and intensities of the metabolite ion signals. Our study demonstrates the potential of PAAG embedding as a standard practice for metabolite MALDI tissue imaging, which will lead to an expanded application scope of MALDI-MSI.

PMID:36883606 | DOI:10.1039/d2cc07075h

Categories: Literature Watch

Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean

Wed, 2023-03-08 06:00

J Exp Bot. 2023 Mar 8:erad083. doi: 10.1093/jxb/erad083. Online ahead of print.

ABSTRACT

Common bean (Phaseolus vulgaris L.), one of the most important legume crops, use atmospheric nitrogen through symbiosis with soil rhizobia reducing the nitrogen fertilization needs. However, this legume is particularly sensitive to drought conditions, prevalent in arid regions where this crop is cultured. Therefore, studying the response to drought is important to sustain crop productivity. We have used integrated transcriptomic and metabolomic analysis to understand the molecular responses to water deficit in a marker-class common bean accession cultivated under N2-fixation or fertilized with nitrate (NO3-). RNA-seq revealed more transcriptional changes in the plants fertilized with NO3- than in the N2-fixing plants. However, changes in N2-fixing plants were more associated with drought tolerance than in the NO3- fertilized ones. N2-fixing plants accumulated more ureides in response to drought and GC/MS and LC/MS analysis of primary and secondary metabolites profiles revealed that N2-fixing plants also had higher levels of ABA, proline, raffinose, amino acids, sphingolipids and triacylglycerols than the NO3- fertilized ones. Moreover, plants grown under nitrogen fixation recovered from drought better than plants fertilized with NO3-. Altogether we show that common bean plants grown under symbiotic nitrogen fixation were more protected against drought than the plants fertilized with nitrate.

PMID:36883579 | DOI:10.1093/jxb/erad083

Categories: Literature Watch

Pan-cancer association of DNA repair deficiencies with whole-genome mutational patterns

Wed, 2023-03-08 06:00

Elife. 2023 Mar 8;12:e81224. doi: 10.7554/eLife.81224. Online ahead of print.

ABSTRACT

DNA repair deficiencies in cancers may result in characteristic mutational patterns, as exemplified by deficiency of BRCA1/2 and efficacy prediction for PARP-inhibitors. We trained and evaluated predictive models for loss-of-function (LOF) of 145 individual DDR genes based on genome-wide mutational patterns, including structural variants, indels, and base-substitution signatures. We identified 24 genes whose deficiency could be predicted with good accuracy, including expected mutational patterns for BRCA1/2, MSH3/6, TP53, and CDK12 LOF variants. CDK12 is associated with tandem-duplications, and we here demonstrate that this association can accurately predict gene deficiency in prostate cancers (area under the ROC curve=0.97). Our novel associations include mono- or biallelic LOF variants of ATRX, IDH1, HERC2, CDKN2A, PTEN, and SMARCA4, and our systematic approach yielded a catalogue of predictive models, which may provide targets for further research and development of treatment, and potentially help guide therapy.

PMID:36883553 | DOI:10.7554/eLife.81224

Categories: Literature Watch

Unveiling the epigenomic mechanisms of acquired platinum-resistance in high-grade serous ovarian cancer

Wed, 2023-03-08 06:00

Int J Cancer. 2023 Mar 8. doi: 10.1002/ijc.34496. Online ahead of print.

ABSTRACT

Resistance to platinum-based chemotherapy is the major cause of death from high-grade serous ovarian cancer (HGSOC). We hypothesize that detection of specific DNA methylation changes may predict platinum resistance in HGSOC. Using a publicly available "discovery" dataset we examined epigenomic and transcriptomic alterations between primary platinum-sensitive (n = 32) and recurrent acquired drug resistant HGSOC (n = 28) and identified several genes involved in immune and chemoresistance-related pathways. Validation via high-resolution melt analysis of these findings, in cell lines and HGSOC tumours, demonstrated the most consistent changes were observed in three of the genes: APOBEC3A, NKAPL and PDCD1. Plasma samples from an independent HGSOC cohort (n = 17) were analysed using droplet digital PCR. Hypermethylation of NKAPL was detected in 46% and hypomethylation of APOBEC3A in 69% of plasma samples taken from women with relapsed HGSOC (n = 13), with no alterations identified in disease-free patients (n = 4). Following these results, and using a CRISPR-Cas9 approach, we were also able to demonstrate that in vitro NKAPL promoter demethylation increased platinum sensitivity by 15%. Overall, this study demonstrates the importance of aberrant methylation, especially of the NKAPL gene, in acquired platinum resistance in HGSOC. This article is protected by copyright. All rights reserved.

PMID:36883413 | DOI:10.1002/ijc.34496

Categories: Literature Watch

Microclimate is a strong predictor of the native and invasive plant-associated soil microbiome on San Cristóbal Island, Galápagos archipelago

Wed, 2023-03-08 06:00

Environ Microbiol. 2023 Mar 7. doi: 10.1111/1462-2920.16361. Online ahead of print.

ABSTRACT

Understanding the drivers that affect soil bacterial and fungal communities is essential to understanding and mitigating the impacts of human activity on vulnerable ecosystems like those on the Galápagos Islands. The volcanic slopes of these Islands lead to steep elevation gradients that generate distinct microclimates across small spatial scales. Although much is known about the impacts of invasive plant species on the above-ground biodiversity of the Galápagos Islands, little is known about their resident soil microbial communities and the factors shaping them. Here, we investigate the bacterial and fungal soil communities associated with invasive and native plant species across three distinct microclimates on San Cristóbal Island (arid, transition zone, and humid). At each site, we collected soil at three depths (rhizosphere, 5 cm, and 15 cm) from multiple plants. Sampling location was the strongest driver of both bacterial and fungal communities, explaining 73% and 43% of variation in the bacterial and fungal community structure, respectively, with additional minor but significant impacts from soil depth and plant type (invasive vs. native). This study highlights the continued need to explore microbial communities across diverse environments and demonstrates how both abiotic and biotic factors impact soil microbial communities in the Galápagos archipelago. This article is protected by copyright. All rights reserved.

PMID:36883264 | DOI:10.1111/1462-2920.16361

Categories: Literature Watch

A knowledge empowered explainable gene ontology fingerprint approach to improve gene functional explication and prediction

Tue, 2023-03-07 06:00

iScience. 2023 Mar 7;26(4):106356. doi: 10.1016/j.isci.2023.106356. eCollection 2023 Apr 21.

ABSTRACT

Functional explication of genes is of great scientific value. However, conventional methods have challenges for those genes that may affect biological processes but are not annotated in public databases. Here, we developed a novel explainable gene ontology fingerprint (XGOF) method to automatically produce knowledge networks on biomedical literature in a given field which quantitatively characterizes the association between genes and ontologies. XGOF provides systematic knowledge for the potential function of genes and ontologically compares similarities and discrepancies in different disease-XGOFs integrating omics data. More importantly, XGOF can not only help to infer major cellular components in a disease microenvironment but also reveal novel gene panels or functions for in-depth experimental research where few explicit connections to diseases have previously been described in the literature. The reliability of XGOF is validated in four application scenarios, indicating a unique perspective of integrating text and data mining, with the potential to accelerate scientific discovery.

PMID:37091235 | PMC:PMC10119605 | DOI:10.1016/j.isci.2023.106356

Categories: Literature Watch

The coral microbiome: Towards an understanding of the molecular mechanisms of coral-microbiota interactions

Tue, 2023-03-07 06:00

FEMS Microbiol Rev. 2023 Mar 7:fuad005. doi: 10.1093/femsre/fuad005. Online ahead of print.

ABSTRACT

Corals live in a complex, multi-partite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbor a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially-derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.

PMID:36882224 | DOI:10.1093/femsre/fuad005

Categories: Literature Watch

Minimal upstream open reading frame of Per2 mediates phase fitness of the circadian clock to day/night physiological body temperature rhythm

Tue, 2023-03-07 06:00

Cell Rep. 2023 Feb 28:112157. doi: 10.1016/j.celrep.2023.112157. Online ahead of print.

ABSTRACT

Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C-38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5' UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology.

PMID:36882059 | DOI:10.1016/j.celrep.2023.112157

Categories: Literature Watch

Clinical value of multi-omics-based biomarker signatures in inflammatory bowel diseases: challenges and opportunities

Tue, 2023-03-07 06:00

Clin Transl Gastroenterol. 2023 Mar 7. doi: 10.14309/ctg.0000000000000579. Online ahead of print.

ABSTRACT

Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are complex and heterogeneous diseases characterized by a multifactorial etiology, therefore demanding a multimodal approach to disentangle the main pathophysiological components driving disease onset and progression. Adoption of a systems biology approach is increasingly advocated with the advent of multi-omics profiling technologies, aiming to improve disease classification, to identify disease biomarkers and to accelerate drug discovery for patients with IBD. However, clinical translation of multi-omics-derived biomarker signatures is lagging behind, since there are several obstacles that need to be addressed in order to realize clinically useful signatures. Multi-omics integration and IBD-specific identification of molecular networks, standardization and clearly defined outcomes, strategies to tackle cohort heterogeneity, and external validation of multi-omics-based signatures are critical aspects. While striving for personalized medicine in IBD, careful consideration of these aspects is however needed to adequately match biomarker targets (e.g. the gut microbiome, immunity or oxidative stress) with their corresponding utilities (e.g. early disease detection, endoscopic and clinical outcome). Theory-driven disease classifications and predictions are still governing clinical practice, while this could be improved by adopting an unbiased, data-driven approach relying on molecular data structures integrated with patient and disease characteristics. In the foreseeable future, the main challenge will lie in the complexity and impracticality of implementing multi-omics-based signatures into clinical practice. Still, this could be achieved by developing easy-to-use, robust and cost-effective tools incorporating omics-derived predictive signatures and through the design and execution of prospective, longitudinal, biomarker-stratified clinical trials.

PMID:36881831 | DOI:10.14309/ctg.0000000000000579

Categories: Literature Watch

Volatiles produced by symbiotic yeasts improve trap catches of Carpophilus davidsoni (Coleoptera: Nitidulidae): an important pest of stone fruits in Australia

Tue, 2023-03-07 06:00

J Econ Entomol. 2023 Mar 6:toad027. doi: 10.1093/jee/toad027. Online ahead of print.

ABSTRACT

Carpophilus davidsoni (Dobson) is an important pest of Australian stone fruit. Current management practices for this beetle include the use of a trap that contains an attractant lure comprised of aggregation pheromones and a 'co-attractant' mixture of volatiles from fruit juice fermented using Baker's yeast, Saccharomyces cerevisiae (Hansen). We explored whether volatiles from yeasts Pichia kluyveri (Bedford) and Hanseniaspora guilliermondii (Pijper), which are closely associated with C. davidsoni in nature, might improve the effectiveness of the co-attractant. Field trials using live yeast cultures revealed that P. kluyveri trapped higher numbers of C. davidsoni compared to H. guilliermondii, and comparative GC-MS of volatile emissions of the two yeasts led to the selection of isoamyl acetate and 2-phenylethyl acetate for further investigation. In subsequent field trials, trap catches of C. davidsoni were significantly increased when 2-phenylethyl acetate was added to the co-attractant, compared to when isoamyl acetate was added, or both isoamyl acetate and 2-phenylethyl acetate. We also tested different concentrations of ethyl acetate in the co-attractant (the only ester in the original lure) and found contrasting results in cage bioassays and field trails. Our study demonstrates how exploring volatile emissions from microbes that are ecologically associated with insect pests can result in more potent lures for use in integrated pest management strategies. Results from laboratory bioassays screening volatile compounds should be treated with caution when making inferences regarding attraction under field conditions.

PMID:36881679 | DOI:10.1093/jee/toad027

Categories: Literature Watch

An integrated complete-genome sequencing and systems biology approach to predict antimicrobial resistance genes in the virulent bacterial strains of Moraxella catarrhalis

Tue, 2023-03-07 06:00

Brief Funct Genomics. 2023 Mar 6:elad005. doi: 10.1093/bfgp/elad005. Online ahead of print.

ABSTRACT

Moraxella catarrhalis is a symbiotic as well as mucosal infection-causing bacterium unique to humans. Currently, it is considered as one of the leading factors of acute middle ear infection in children. As M. catarrhalis is resistant to multiple drugs, the treatment is unsuccessful; therefore, innovative and forward-thinking approaches are required to combat the problem of antimicrobial resistance (AMR). To better comprehend the numerous processes that lead to antibiotic resistance in M. catarrhalis, we have adopted a computational method in this study. From the NCBI-Genome database, we investigated 12 strains of M. catarrhalis. We explored the interaction network comprising 74 antimicrobial-resistant genes found by analyzing M. catarrhalis bacterial strains. Moreover, to elucidate the molecular mechanism of the AMR system, clustering and the functional enrichment analysis were assessed employing AMR gene interactions networks. According to the findings of our assessment, the majority of the genes in the network were involved in antibiotic inactivation; antibiotic target replacement, alteration and antibiotic efflux pump processes. They exhibit resistance to several antibiotics, such as isoniazid, ethionamide, cycloserine, fosfomycin, triclosan, etc. Additionally, rpoB, atpA, fusA, groEL and rpoL have the highest frequency of relevant interactors in the interaction network and are therefore regarded as the hub nodes. These genes can be exploited to create novel medications by serving as possible therapeutic targets. Finally, we believe that our findings could be useful to advance knowledge of the AMR system present in M. catarrhalis.

PMID:36881677 | DOI:10.1093/bfgp/elad005

Categories: Literature Watch

360° Diagnostic Tool to Personalize Lifestyle Advice in Primary Care for People With Type 2 Diabetes: Development and Usability Study

Tue, 2023-03-07 06:00

JMIR Form Res. 2023 Mar 7;7:e37305. doi: 10.2196/37305.

ABSTRACT

BACKGROUND: Various multifaceted factors need to be addressed to improve the health and quality of life of people with type 2 diabetes (T2D). Therefore, we developed a web-based decision support tool that comprises a more holistic diagnosis (including 4 domains: body, thinking and feeling, behavior, and environment) and personalized advice. This 360° diagnostic tool enables people with T2D and health care professionals at the general practice to obtain an overview of the most important T2D-related issues and, subsequently, determine the most suitable intervention for the person with T2D.

OBJECTIVE: This study aimed to describe the systematic and iterative development and evaluation of the web-based 360° diagnostic tool.

METHODS: We defined the requirements for the web-based 360° diagnostic tool based on previously developed tools, a literature review, and inputs from a multidisciplinary team of experts. As part of the conceptualization, we defined 3 requirements: diagnostics; feedback; and advice, consultation, and follow-up. Next, we developed and designed the content for each of these requirements. We evaluated the diagnostic part of the tool (ie, measurement instruments and visualization) with a qualitative design, in a usability study with a think-aloud strategy and interview questions, among 8 people with T2D at a Dutch general practice.

RESULTS: For each of the 4 domains, specific parameters and underlying elements were selected, and measurement instruments (including clinical data and questionnaires) were chosen. Cutoff values were defined to identify high-, middle-, and low-ranking scores, and decision rules were developed and implemented using R scripts and algorithms. A traffic light color visual design was created (profile wheel) to provide an overview of the scores per domain. We mapped the interventions that could be added to the tool and developed a protocol designed as a card deck with motivational interview steps. Furthermore, the usability study showed that people with T2D perceived the tool as easy to use, useful, easy to understand, and insightful.

CONCLUSIONS: Preliminary evaluation of the 360° diagnostic tool by experts, health care professionals, and people with T2D showed that the tool was considered relevant, clear, and practical. The iterative process provided insights into the areas of improvement, which were implemented. The strengths, shortcomings, future use, and challenges are also discussed.

PMID:36881463 | DOI:10.2196/37305

Categories: Literature Watch

Temporal phosphoproteomic analysis of VEGF-A signaling in HUVECs: an insight into early signaling events associated with angiogenesis

Tue, 2023-03-07 06:00

J Cell Commun Signal. 2023 Mar 7. doi: 10.1007/s12079-023-00736-z. Online ahead of print.

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) is one of the primary factors promoting angiogenesis in endothelial cells. Although defects in VEGF-A signaling are linked to diverse pathophysiological conditions, the early phosphorylation-dependent signaling events pertinent to VEGF-A signaling remain poorly defined. Hence, a temporal quantitative phosphoproteomic analysis was performed in human umbilical vein endothelial cells (HUVECs) treated with VEGF-A-165 for 1, 5 and 10 min. This led to the identification and quantification of 1971 unique phosphopeptides corresponding to 961 phosphoproteins and 2771 phosphorylation sites in total. Specifically, 69, 153, and 133 phosphopeptides corresponding to 62, 125, and 110 phosphoproteins respectively, were temporally phosphorylated at 1, 5, and 10 min upon addition of VEGF-A. These phosphopeptides included 14 kinases, among others. This study also captured the phosphosignaling events directed through RAC, FAK, PI3K-AKT-MTOR, ERK, and P38 MAPK modules with reference to our previously assembled VEGF-A/VEGFR2 signaling pathway map in HUVECs. Apart from a significant enrichment of biological processes such as cytoskeleton organization and actin filament binding, our results also suggest a role of AAK1-AP2M1 in the regulation of VEGFR endocytosis. Taken together, the temporal quantitative phosphoproteomics analysis of VEGF signaling in HUVECs revealed early signaling events and we believe that this analysis will serve as a starting point for the analysis of differential signaling across VEGF members toward the full elucidation of their role in the angiogenesis processes. Workflow for the identification of early phosphorylation events induced by VEGF-A-165 in HUVEC cells.

PMID:36881336 | DOI:10.1007/s12079-023-00736-z

Categories: Literature Watch

Pages