Drug Repositioning

Repurposing of investigational cancer drugs: Early phase discovery of dengue virus NS2B/NS3 protease inhibitors

Tue, 2023-08-15 06:00

Arch Pharm (Weinheim). 2023 Aug 15:e2300292. doi: 10.1002/ardp.202300292. Online ahead of print.

ABSTRACT

Dengue fever is a neglected vector-borne disease and is more prevalent in Asia. Currently, no specific treatment is available. Given the time and cost of de novo drug discovery and development, an alternative option of drug repurposing is becoming an effective tool. We screened a library of 1127 pharmacologically active, metabolically stable, and structurally diverse small anticancer molecules to identify inhibitors of the dengue virus (DENV) NS2B/NS3 protease. Enzyme kinetics and inhibition data revealed four B-cell lymphoma 2 inhibitors, that is, ABT263, ABT737, AT101, and TW37, as potent inhibitors of DENV NS2B/NS3 protease, with IC50 values of 0.86, 1.15, 0.81, and 0.89 µM, respectively. Mode of inhibition experiments and computational docking analyses indicated that ABT263 and ABT737 are competitive inhibitors, whereas AT101 and TW37 are noncompetitive inhibitors of the protease. With further evaluation, the identified inhibitors of the DENV NS2B/NS3 protease have the potential to be developed into specific anti-dengue therapeutics.

PMID:37582646 | DOI:10.1002/ardp.202300292

Categories: Literature Watch

Identifying potential anti-metastasis drugs for prostate cancer through integrative bioinformatics analysis and compound library screening

Tue, 2023-08-15 06:00

J Gene Med. 2023 Aug 14:e3548. doi: 10.1002/jgm.3548. Online ahead of print.

ABSTRACT

BACKGROUND: Metastasis poses the greatest threat to the lives of individuals with prostate cancer. Therefore, it is imperative to identify the underlying mechanism driving metastasis. Doing so would facilitate the detection of new diagnostic biomarkers and the advancement of treatment options for patients.

METHODS: Metastasis-related modules were identified through weighted gene co-expression network analysis based on microarray GSE6919. Hub genes were confirmed by quantitative real-time PCR across different prostate cell lines and clinic samples. Pivotal genes were determined through integration of RNA and transcription factor-target associated interactions. To predict drugs with potential to suppress tumor metastasis, we applied molecular networks using the DrugBank database. Drug repositioning analysis and confirmation of drug screen were conducted using the compound library. Confirmation of selective cytotoxicity of cupric oxide was carried out via invasion, transwell and apoptosis assays.

RESULTS: We identified five metastasis-related modules. Of these modules, two were identified to represent core dysfunction modules in which five hub genes were determined for each module. Five of these 10 genes correlating with prostate cancer progression. Furthermore, our analysis revealed that there are 36 drugs with the potential to be active against tumor metastasis. Finally, we identified four compounds that have not previously been reported to have any association with cancer therapy. Of these, cupric oxide was determined to have the best chemotherapeutic potential in treating prostate cancer metastasis.

CONCLUSIONS: By combining bioinformatics methods with compound library screening, this study proposes a valuable approach to drug discovery. Cupric oxide showed the potential in the treatment of prostate cancer metastasis and deserves further study.

PMID:37580943 | DOI:10.1002/jgm.3548

Categories: Literature Watch

Graphical Learning and Causal Inference for Drug Repurposing

Mon, 2023-08-14 06:00

medRxiv. 2023 Aug 2:2023.07.29.23293346. doi: 10.1101/2023.07.29.23293346. Preprint.

ABSTRACT

Gene expression profiles that connect drug perturbations, disease gene expression signatures, and clinical data are important for discovering potential drug repurposing indications. However, the current approach to gene expression reversal has several limitations. First, most methods focus on validating the reversal expression of individual genes. Second, there is a lack of causal approaches for identifying drug repurposing candidates. Third, few methods for passing and summarizing information on a graph have been used for drug repurposing analysis, with classical network propagation and gene set enrichment analysis being the most common. Fourth, there is a lack of graph-valued association analysis, with current approaches using real-valued association analysis one gene at a time to reverse abnormal gene expressions to normal gene expressions. To overcome these limitations, we propose a novel causal inference and graph neural network (GNN)-based framework for identifying drug repurposing candidates. We formulated a causal network as a continuous constrained optimization problem and developed a new algorithm for reconstructing large-scale causal networks of up to 1,000 nodes. We conducted large-scale simulations that demonstrated good false positive and false negative rates. To aggregate and summarize information on both nodes and structure from the spatial domain of the causal network, we used directed acyclic graph neural networks (DAGNN). We also developed a new method for graph regression in which both dependent and independent variables are graphs. We used graph regression to measure the degree to which drugs reverse altered gene expressions of disease to normal levels and to select potential drug repurposing candidates. To illustrate the application of our proposed methods for drug repurposing, we applied them to phase I and II L1000 connectivity map perturbational profiles from the Broad Institute LINCS, which consist of gene-expression profiles for thousands of perturbagens at a variety of time points, doses, and cell lines, as well as disease gene expression data under-expressed and over-expressed in response to SARS-CoV-2.

PMID:37577650 | PMC:PMC10418581 | DOI:10.1101/2023.07.29.23293346

Categories: Literature Watch

Navigating drug repurposing for Chagas disease: advances, challenges, and opportunities

Mon, 2023-08-14 06:00

Front Pharmacol. 2023 Jul 27;14:1233253. doi: 10.3389/fphar.2023.1233253. eCollection 2023.

ABSTRACT

Chagas disease is a vector-borne illness caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). It poses a significant public health burden, particularly in the poorest regions of Latin America. Currently, there is no available vaccine, and chemotherapy has been the traditional treatment for Chagas disease. However, the treatment options are limited to just two outdated medicines, nifurtimox and benznidazole, which have serious side effects and low efficacy, especially during the chronic phase of the disease. Collectively, this has led the World Health Organization to classify it as a neglected disease. To address this problem, new drug regimens are urgently needed. Drug repurposing, which involves the use of existing drugs already approved for the treatment of other diseases, represents an increasingly important option. This approach offers potential cost reduction in new drug discovery processes and can address pharmaceutical bottlenecks in the development of drugs for Chagas disease. In this review, we discuss the state-of-the-art of drug repurposing approaches, including combination therapy with existing drugs, to overcome the formidable challenges associated with treating Chagas disease. Organized by original therapeutic area, we describe significant recent advances, as well as the challenges in this field. In particular, we identify candidates that exhibit potential for heightened efficacy and reduced toxicity profiles with the ultimate objective of accelerating the development of new, safe, and effective treatments for Chagas disease.

PMID:37576826 | PMC:PMC10416112 | DOI:10.3389/fphar.2023.1233253

Categories: Literature Watch

γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus

Mon, 2023-08-14 06:00

World J Gastroenterol. 2023 Jul 28;29(28):4416-4432. doi: 10.3748/wjg.v29.i28.4416.

ABSTRACT

BACKGROUND: The association between diabetes mellitus (DM) and the increased risk and progression of cholangiocarcinoma (CCA) has been reported with unclear underlying mechanisms. Previous studies showed that γ-aminobutyric acid (GABA) B2 receptor (GABBR2) was upregulated in CCA cells cultured in high glucose (HG) conditions. Roles of GABA receptors in CCA progression have also been studied, but their association with DM and hyperglycemia in CCA remains unclarified.

AIM: To investigate the effects of hyperglycemia on GABBR2 expression and the potential use of GABBR2 as a CCA therapeutic target.

METHODS: CCA cells, KKU-055 and KKU-213A, were cultured in Dulbecco Modified Eagle's Medium supplemented with 5.6 mmol/L (normal glucose, NG) or 25 mmol/L (HG) glucose and assigned as NG and HG cells, respectively. GABBR2 expression in NG and HG cells was investigated using real-time quantitative polymerase chain reaction and western blot. Expression and localization of GABBR2 in CCA cells were determined using immunocytofluorescence. GABBR2 expression in tumor tissues from CCA patients with and without DM was studied using immunohistochemistry, and the correlations of GABBR2 with the clinicopathological characteristics of patients were analyzed using univariate analysis. Effects of baclofen, a GABA-B receptor agonist, on CCA cell proliferation and clonogenicity were tested using the MTT and clonogenic assays. Phospho-kinases arrays were used to screen the affected signaling pathways after baclofen treatment, and the candidate signaling molecules were validated using the public transcriptomic data and western blot.

RESULTS: GABBR2 expression in CCA cells was induced by HG in a dose- and time-dependent manner. CCA tissues from patients with DM and hyperglycemia also showed a significantly higher GABBR2 expression compared with tumor tissues from those with euglycemia (P < 0.01). High GABBR2 expression was significantly associated with a poorer non-papillary histological subtype but with smaller sizes of CCA tumors (P < 0.05). HG cells of both tested CCA cell lines were more sensitive to baclofen treatment. Baclofen significantly suppressed the proliferation and clonogenicity of CCA cells in both NG and HG conditions (P < 0.05). Phospho-kinase arrays suggested glycogen synthase kinase 3 (GSK3), β-catenin, and the signal transducer and activator of transcription 3 (STAT3) as candidate signaling molecules under the regulation of GABBR2, which were verified in NG and HG cells of the individual CCA cell lines. Cyclin D1 and c-Myc, the common downstream targets of GSK3/β-catenin and STAT3 involving cell proliferation, were accordingly downregulated after baclofen treatment.

CONCLUSION: GABBR2 is upregulated by HG and holds a promising role as a therapeutic target for CCA regardless of the glucose condition.

PMID:37576707 | PMC:PMC10415970 | DOI:10.3748/wjg.v29.i28.4416

Categories: Literature Watch

Reduced Prevalence of Dementia in Patients Prescribed Tacrolimus, Sirolimus, or Cyclosporine

Mon, 2023-08-14 06:00

J Alzheimers Dis. 2023 Aug 8. doi: 10.3233/JAD-230526. Online ahead of print.

ABSTRACT

BACKGROUND: Evidence suggests patients prescribed calcineurin inhibitors (CNIs) have a reduced prevalence of dementia, including Alzheimer's disease (AD); however, this result has never been replicated in a large cohort and the involved mechanism(s) and site of action (central versus periphery) remain unclear.

OBJECTIVE: We aim to determine if prescription of CNIs is associated with reduced prevalence of dementia, including AD, in a large, diverse patient population. Furthermore, we aim to gain insight into the mechanism(s) and site of action for CNIs to reduce dementia prevalence.

METHODS: Electronic health records (EHRs) from patients prescribed tacrolimus, cyclosporine, or sirolimus were analyzed to compare prevalence, odds, and hazard ratios related to dementia diagnoses among cohorts. EHRs from a random, heterogeneous population from the same network were obtained to generate a general population-like control.

RESULTS: All drugs examined reduced dementia prevalence compared to the general population-like control. There were no differences in dementia diagnoses upon comparing tacrolimus and sirolimus; however, patients prescribed tacrolimus had a reduced dementia prevalence relative to cyclosporine.

CONCLUSION: Converging mechanisms of action between tacrolimus and sirolimus likely explain the similar dementia prevalence between the cohorts. Calcineurin inhibition within the brain has a greater probability of reducing dementia relative to peripherally-restricted calcineurin inhibition. Overall, immunosuppressants provide a promising therapeutic avenue for dementia, with emphasis on the brain-penetrant CNI tacrolimus.

PMID:37574739 | DOI:10.3233/JAD-230526

Categories: Literature Watch

A two-pronged approach against glioblastoma: drug repurposing and nanoformulation design for in situ-controlled release

Sun, 2023-08-13 06:00

Drug Deliv Transl Res. 2023 Aug 13. doi: 10.1007/s13346-023-01379-8. Online ahead of print.

ABSTRACT

Glioblastoma (GB) is one of the most lethal types of neoplasms. Its biologically aggressive nature and the presence of the blood-brain barrier (BBB) limit the efficacy of standard therapies. Several strategies are currently being developed to both overcome the BBB and deliver drugs site specifically to tumor cells. This work hypothesizes a two-pronged approach to tackle GB: drug repurposing with celecoxib (CXB) and a nanoformulation using ultra-small nanostructured lipid carriers (usNLCs). CXB antitumor druggable activity was inspected bioinformatically and screened in four glioma cell lines aiming at the comparison with temozolomide (TMZ), as standard of care. Delving into formulation design, it was tailored aiming at (i) improving the drug solubility/loading properties, (ii) assigning a thermal-triggerable drug release based on a lipid matrix with a low melting point, and (iii) enhancing the cytotoxic effect by selecting a template targetable to tumor cells. For this purpose, an integrated analysis of the critical material attributes (CMAs), critical process parameters (CPPs), and critical quality attributes (CQAs) was conducted under the umbrella of a quality by design approach. CMAs that demonstrate a high-risk level for the final quality and performance of the usNLCs include the drug solubility in lipids (solid and liquid), the lipid composition (envisioning a thermoresponsive approach), the ratio between lipids (solid vs. liquid), and the surfactant type and concentration. Particle size was shown to be governed by the interaction lipid-surfactant followed by surfactant type. The drug encapsulation did not influence colloidal characteristics, making it a promising carrier for lipophilic drugs. In general, usNLCs exhibited a controlled drug release during the 72 h at 37 °C with a final release of ca. 25%, while at 45 °C this was doubled. The in vitro cellular performance depended on the surfactant type and lipid composition, with the formulations containing a sole solid lipid (Suppocire® NB) and Kolliphor® RH40 as surfactant being the most cytotoxic. usNLCs with an average diameter of ca. 70 nm and a narrow size distribution (PdI lower than 0.2) were yielded, exhibiting high stability, drug protection, sustained and thermo-sensitive release properties, and high cytotoxicity to glioma cells, meeting the suitable CQAs for parenteral administration. This formulation may pave the way to a multi-addressable purpose to improve GB treatment.

PMID:37574500 | DOI:10.1007/s13346-023-01379-8

Categories: Literature Watch

Radotinib Decreases Prion Propagation and Prolongs Survival Times in Models of Prion Disease

Sat, 2023-08-12 06:00

Int J Mol Sci. 2023 Jul 31;24(15):12241. doi: 10.3390/ijms241512241.

ABSTRACT

The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research focuses on identifying medicines that can delay the progression of these diseases. According to the concept of drug repositioning, we investigated the efficacy of the c-Abl tyrosine kinase inhibitor radotinib, which is a drug that is approved for the treatment of chronic myeloid leukemia, in the treatment of disease progression in prion models, including prion-infected cell models, Tga20 and hamster cerebellar slice culture models, and 263K scrapie-infected hamster models. Radotinib inhibited PrPSc deposition in neuronal ZW13-2 cells that were infected with the 22L or 139A scrapie strains and in cerebellar slice cultures that were infected with the 22L or 263K scrapie strains. Interestingly, hamsters that were intraperitoneally injected with the 263K scrapie strain and intragastrically treated with radotinib (100 mg/kg) exhibited prolonged survival times (159 ± 28.6 days) compared to nontreated hamsters (135 ± 9.9 days) as well as reduced PrPSc deposition and ameliorated pathology. However, intraperitoneal injection of radotinib exerted a smaller effect on the survival rate of the hamsters. Additionally, we found that different concentrations of radotinib (60, 100, and 200 mg/kg) had similar effects on survival time, but this effect was not observed after treatment with a low dose (30 mg/kg) of radotinib. Interestingly, when radotinib was administered 4 or 8 weeks after prion inoculation, the treated hamsters survived longer than the vehicle-treated hamsters. Additionally, a pharmacokinetic assay revealed that radotinib effectively crossed the blood-brain barrier. Based on our findings, we suggest that radotinib is a new candidate anti-prion drug that could possibly be used to treat prion diseases and promote the remission of symptoms.

PMID:37569615 | DOI:10.3390/ijms241512241

Categories: Literature Watch

A Functional Pipeline of Genome-Wide Association Data Leads to Midostaurin as a Repurposed Drug for Alzheimer's Disease

Sat, 2023-08-12 06:00

Int J Mol Sci. 2023 Jul 28;24(15):12079. doi: 10.3390/ijms241512079.

ABSTRACT

Genome-wide association studies (GWAS) constitute a powerful tool to identify the different biochemical pathways associated with disease. This knowledge can be used to prioritize drugs targeting these routes, paving the road to clinical application. Here, we describe DAGGER (Drug Repositioning by Analysis of GWAS and Gene Expression in R), a straightforward pipeline to find currently approved drugs with repurposing potential. As a proof of concept, we analyzed a meta-GWAS of 1.6 × 107 single-nucleotide polymorphisms performed on Alzheimer's disease (AD). Our pipeline uses the Genotype-Tissue Expression (GTEx) and Drug Gene Interaction (DGI) databases for a rational prioritization of 22 druggable targets. Next, we performed a two-stage in vivo functional assay. We used a C. elegans humanized model over-expressing the Aβ1-42 peptide. We assayed the five top-scoring candidate drugs, finding midostaurin, a multitarget protein kinase inhibitor, to be a protective drug. Next, 3xTg AD transgenic mice were used for a final evaluation of midostaurin's effect. Behavioral testing after three weeks of 20 mg/kg intraperitoneal treatment revealed a significant improvement in behavior, including locomotion, anxiety-like behavior, and new-place recognition. Altogether, we consider that our pipeline might be a useful tool for drug repurposing in complex diseases.

PMID:37569459 | DOI:10.3390/ijms241512079

Categories: Literature Watch

Vasculogenic Mimicry Occurs at Low Levels in Primary and Recurrent Glioblastoma

Sat, 2023-08-12 06:00

Cancers (Basel). 2023 Aug 1;15(15):3922. doi: 10.3390/cancers15153922.

ABSTRACT

Vasculogenic mimicry (VM), the ability of tumour cells to form functional microvasculature without an endothelial lining, may contribute to anti-angiogenic treatment resistance in glioblastoma. We aimed to assess the extent of VM formation in primary and recurrent glioblastomas and to determine whether VM vessels also express prostate-specific membrane antigen (PSMA), a pathological vessel marker. Formalin-fixed paraffin-embedded tissue from 35 matched pairs of primary and recurrent glioblastoma was immunohistochemically labelled for PSMA and CD34 and stained with periodic acid-Schiff (PAS). Vascular structures were categorised as endothelial vessels (CD34+/PAS+) or VM (CD34-/PAS+). Most blood vessels in both primary and recurrent tumours were endothelial vessels, and these significantly decreased in recurrent tumours (p < 0.001). PSMA was expressed by endothelial vessels, and its expression was also decreased in recurrent tumours (p = 0.027). VM was observed in 42.86% of primary tumours and 28.57% of recurrent tumours. VM accounted for only a small proportion of the tumour vasculature and VM density did not differ between primary and recurrent tumours (p = 0.266). The functional contribution of VM and its potential as a treatment target in glioblastoma require further investigation.

PMID:37568738 | DOI:10.3390/cancers15153922

Categories: Literature Watch

Potential drug repurposing of ruxolitinib to inhibit the JAK/STAT pathway for the treatment of patients with epithelial ovarian cancer

Fri, 2023-08-11 06:00

J Obstet Gynaecol Res. 2023 Aug 10. doi: 10.1111/jog.15761. Online ahead of print.

ABSTRACT

AIM: This review aimed to describe the potential for therapeutic targeting of the JAK/STAT signaling pathway by repurposing the clinically-approved JAK inhibitor ruxolitinib in the patients with epithelial ovarian cancer (OC) setting.

METHODS: We reviewed publications that focus on the inhibition of the JAK/STAT pathway in hematological and solid malignancies including OC.

RESULTS: Preclinical studies showed that ruxolitinib effectively reduces OC cell viability and metastasis and enhances the anti-tumor activity of chemotherapy drugs. There are a number of recent clinical trials exploring the role of JAK/STAT inhibition in solid cancers including OC. Early results have not adequately supported efficacy in solid tumors. However, there are preclinical data and clinical studies supporting the use of ruxolitinib in combination with both chemotherapy and other targeted drugs in OC setting.

CONCLUSION: Inflammatory conditions and persistent activation of the JAK/STAT pathway are associated with tumourigenesis and chemoresistance, and therapeutic blockade of this pathway shows promising results. For women with OC, clinical investigation exploring the role of ruxolitinib in combination with chemotherapy agents or other targeted therapeutics is warranted.

PMID:37565583 | DOI:10.1111/jog.15761

Categories: Literature Watch

Possible therapeutic targets for SARS-CoV-2 infection and COVID-19

Fri, 2023-08-11 06:00

J Allergy Infect Dis. 2021;2(3):75-83. doi: 10.46439/allergy.2.028.

ABSTRACT

SARS-CoV-2 infection causes COVID-19, which has emerged as a health emergency worldwide. SARS-CoV-2 infects cells by binding to ACE2 receptors and enters into the cytoplasm following its escape from endolysosomes. Once in the cytoplasm, the virus replicates and eventually causes various pathological conditions including acute respiratory distress syndrome (ARDS) that is caused by pro-inflammatory cytokine storms. Thus, endolysosomes and cytokine storms are important therapeutic targets to suppress SARS-CoV-2 infection and COVID-19. Here, we discuss therapeutic targets of SARS-CoV-2 infection and available drugs that could be helpful in the suppression of the SARS-CoV-2 infection and pathological condition COVID-19. The urgency of the COVID-19 pandemic precludes the development of new drugs and increased focus on drug repurposing might provide the quickest way to finding effective medicines.

PMID:37564275 | PMC:PMC10414779 | DOI:10.46439/allergy.2.028

Categories: Literature Watch

<em>In vitro</em> and <em>in vivo</em> effects of <em>Pelargonium sidoides DC.</em> root extract EPs<sup>®</sup> 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2

Fri, 2023-08-11 06:00

Front Pharmacol. 2023 Jul 26;14:1214351. doi: 10.3389/fphar.2023.1214351. eCollection 2023.

ABSTRACT

The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.

PMID:37564181 | PMC:PMC10410074 | DOI:10.3389/fphar.2023.1214351

Categories: Literature Watch

Enrichment analysis of phenotypic data for drug repurposing in rare diseases

Thu, 2023-08-10 06:00

Front Pharmacol. 2023 Jul 25;14:1128562. doi: 10.3389/fphar.2023.1128562. eCollection 2023.

ABSTRACT

Drug-induced Behavioral Signature Analysis (DBSA), is a machine learning (ML) method for in silico screening of compounds, inspired by analytical methods quantifying gene enrichment in genomic analyses. When applied to behavioral data it can identify drugs that can potentially reverse in vivo behavioral symptoms in animal models of human disease and suggest new hypotheses for drug discovery and repurposing. We present a proof-of-concept study aiming to assess Drug-induced Behavioral Signature Analysis (DBSA) as a systematic approach for drug discovery for rare disorders. We applied Drug-induced Behavioral Signature Analysis to high-content behavioral data obtained with SmartCube®, an automated in vivo phenotyping platform. The therapeutic potential of several dozen approved drugs was assessed for phenotypic reversal of the behavioral profile of a Huntington's Disease (HD) murine model, the Q175 heterozygous knock-in mice. The in silico Drug-induced Behavioral Signature Analysis predictions were enriched for drugs known to be effective in the symptomatic treatment of Huntington's Disease, including bupropion, modafinil, methylphenidate, and several SSRIs, as well as the atypical antidepressant tianeptine. To validate the method, we tested acute and chronic effects of tianeptine (20 mg/kg, i. p.) in vivo, using Q175 mice and wild type controls. In both experiments, tianeptine significantly rescued the behavioral phenotype assessed with the SmartCube® platform. Our target-agnostic method thus showed promise for identification of symptomatic relief treatments for rare disorders, providing an alternative method for hypothesis generation and drug discovery for disorders with huge disease burden and unmet medical needs.

PMID:37560472 | PMC:PMC10407094 | DOI:10.3389/fphar.2023.1128562

Categories: Literature Watch

Polypharmacology guided drug repositioning approach for SARS-CoV2

Wed, 2023-08-09 06:00

PLoS One. 2023 Aug 9;18(8):e0289890. doi: 10.1371/journal.pone.0289890. eCollection 2023.

ABSTRACT

Drug repurposing has emerged as an important strategy and it has a great potential in identifying therapeutic applications for COVID-19. An extensive virtual screening of 4193 FDA approved drugs has been carried out against 24 proteins of SARS-CoV2 (NSP1-10 and NSP12-16, envelope, membrane, nucleoprotein, spike, ORF3a, ORF6, ORF7a, ORF8, and ORF9b). The drugs were classified into top 10 and bottom 10 drugs based on the docking scores followed by the distribution of their therapeutic indications. As a result, the top 10 drugs were found to have therapeutic indications for cancer, pain, neurological disorders, and viral and bacterial diseases. As drug resistance is one of the major challenges in antiviral drug discovery, polypharmacology and network pharmacology approaches were employed in the study to identify drugs interacting with multiple targets and drugs such as dihydroergotamine, ergotamine, bisdequalinium chloride, midostaurin, temoporfin, tirilazad, and venetoclax were identified among the multi-targeting drugs. Further, a pathway analysis of the genes related to the multi-targeting drugs was carried which provides insight into the mechanism of drugs and identifying targetable genes and biological pathways involved in SARS-CoV2.

PMID:37556478 | DOI:10.1371/journal.pone.0289890

Categories: Literature Watch

<em>In-silico</em> investigation of E8 surface protein of the monkeypox virus to identify potential therapeutic agents

Wed, 2023-08-09 06:00

J Biomol Struct Dyn. 2023 Aug 9:1-14. doi: 10.1080/07391102.2023.2245041. Online ahead of print.

ABSTRACT

The re-emergence of the monkeypox virus (MPXV) in 2022 has become a global issue. The virus was first found in Denmark in 1958. The first human MPXV disease was reported in 1980 in Congo, caused by a rare zoonotic virus belonging to the genus Orthopoxvirus and the family Poxviridae. Like SARS-CoV, there are no specific drugs to treat this infection. Taking cues from the successful implementation of drug repositioning for the Covid-19 pandemic using in silico drug discovery. We employed structure-based drug design in the study to repurpose the existing drug and natural product derivatives libraries against MPXV. The E8 protein was chosen as a therapeutic target because it is a surface membrane protein involved in viral entry and adhesion to the host cell surface membrane. Our study was bifurcated into the following steps; determining and analyzing the structure of the E8, followed by structure-based virtual screening of different datasets (natural products obtained from bacteria and fungi and FDA-approved drugs) to identify the hits. Based on the best binding affinities and protein-ligand interactions, we further proceeded for molecular dynamic (MD) studies of the identified hits, which revealed Gabosine D (docking score = -8.469 kcal/mol, MM/GBSA dG bind = -41.6729 kcal/mol) and Edoxudine (docking score = -6.372 kcal/mol, MM/GBSA dG bind = -35.8291 kcal/mol) as the best lead molecules. MD simulation for 100 ns was performed in triplicate, and post MM/GBSA analysis was conducted, which proves the stability of the identified leads. In addition, their ADME profiles also confirmed their suitability as therapeutic options for the treatment of monkeypox.Communicated by Ramaswamy H. Sarma.

PMID:37555596 | DOI:10.1080/07391102.2023.2245041

Categories: Literature Watch

Repurposing miconazole and tamoxifen for the treatment of Mycobacterium abscessus complex infections through in silico chemogenomics approach

Tue, 2023-08-08 06:00

World J Microbiol Biotechnol. 2023 Aug 9;39(10):273. doi: 10.1007/s11274-023-03718-w.

ABSTRACT

Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.

PMID:37553519 | DOI:10.1007/s11274-023-03718-w

Categories: Literature Watch

Facilitated Drug Repurposing with Artemisinin-Derived PROTACs: Unveiling PCLAF as a Therapeutic Target

Tue, 2023-08-08 06:00

J Med Chem. 2023 Aug 8. doi: 10.1021/acs.jmedchem.3c00824. Online ahead of print.

ABSTRACT

Artemisinin, a prominent anti-malaria drug, is being investigated for its potential as a repurposed cancer treatment. However, its effectiveness in tumor cell lines remains limited, and its mechanism of action is unclear. To make more progress, the PROteolysis-TArgeting chimera (PROTAC) technique has been applied to design and synthesize novel artemisinin derivatives in this study. Among them, AD4, the most potent compound, exhibited an IC50 value of 50.6 nM in RS4;11 cells, over 12-fold better than that of its parent compound, SM1044. This was supported by prolonged survival of RS4;11-transplanted NOD/SCID mice. Meanwhile, AD4 effectively degraded PCLAF in RS4;11 cells and thus activated the p21/Rb axis to exert antitumor activity by directly targeting PCLAF. The discovery of AD4 highlights the great potential of using PROTACs to improve the efficacy of natural products, identify therapeutic targets, and facilitate drug repurposing. This opens a promising avenue for transforming other natural products into effective therapies.

PMID:37552639 | DOI:10.1021/acs.jmedchem.3c00824

Categories: Literature Watch

Challenges and Opportunities for Celecoxib Repurposing

Tue, 2023-08-08 06:00

Pharm Res. 2023 Aug 8. doi: 10.1007/s11095-023-03571-4. Online ahead of print.

ABSTRACT

Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.

PMID:37552383 | DOI:10.1007/s11095-023-03571-4

Categories: Literature Watch

Drug Repurposing Against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The computational perspective

Tue, 2023-08-08 06:00

Curr Med Chem. 2023 Aug 7. doi: 10.2174/0929867331666230807151708. Online ahead of print.

ABSTRACT

Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved the way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, the discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.

PMID:37550911 | DOI:10.2174/0929867331666230807151708

Categories: Literature Watch

Pages