Drug Repositioning
Drug repurposing of dopaminergic drugs to inhibit ataxin-3 aggregation
Biomed Pharmacother. 2023 Aug 5;165:115258. doi: 10.1016/j.biopha.2023.115258. Online ahead of print.
ABSTRACT
The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.
PMID:37549460 | DOI:10.1016/j.biopha.2023.115258
A Mendelian randomization study for drug repurposing reveals bezafibrate and fenofibric acid as potential osteoporosis treatments
Front Pharmacol. 2023 Jul 20;14:1211302. doi: 10.3389/fphar.2023.1211302. eCollection 2023.
ABSTRACT
Background: Lipid pathways have been implicated in the pathogenesis of osteoporosis (OP). Lipid-lowering drugs may be used to prevent and treat OP. However, the causal interpretation of results from traditional observational designs is controversial by confounding. We aimed to investigate the causal association between genetically proxied lipid-lowering drugs and OP risk. Methods: We conducted two-step Mendelian randomization (MR) analyses to investigate the causal association of genetically proxied lipid-lowering drugs on the risk of OP. The first step MR was used to estimate the associations of drug target genes expression with low-density lipoprotein cholesterol (LDL-C) levels. The significant SNPs in the first step MR were used as instrumental variables in the second step MR to estimate the associations of LDL-C levels with forearm bone mineral density (FA-BMD), femoral neck BMD (FN-BMD), lumbar spine BMD (LS-BMD) and fracture. The significant lipid-lowering drugs after MR analyses were further evaluated for their effects on bone mineralization using a dexamethasone-induced OP zebrafish model. Results: The first step MR analysis found that the higher expression of four genes (HMGCR, NPC1L1, PCSK9 and PPARG) was significantly associated with a lower LDL-C level. The genetically decreased LDL-C level mediated by the PPARG was significantly associated with increased FN-BMD (BETA = -1.38, p = 0.001) and LS-BMD (BETA = -2.07, p = 3.35 × 10-5) and was marginally significantly associated with FA-BMD (BETA = -2.36, p = 0.008) and reduced fracture risk (OR = 3.47, p = 0.008). Bezafibrate (BZF) and Fenofibric acid (FBA) act as PPARG agonists. Therefore genetically proxied BZF and FBA had significant protective effects on OP. The dexamethasone-induced OP zebrafish treated with BZF and FBA showed increased bone mineralization area and integrated optical density (IOD) with alizarin red staining. Conclusion: The present study provided evidence that BZF and FBA can increase BMD, suggesting their potential effects in preventing and treating OP. These findings potentially pave the way for future studies that may allow personalized selection of lipid-lowering drugs for those at risk of OP.
PMID:37547327 | PMC:PMC10397407 | DOI:10.3389/fphar.2023.1211302
Exploring NCATS In-House Biomedical Data for Evidence-based Drug Repurposing
bioRxiv. 2023 Jul 25:2023.07.21.550045. doi: 10.1101/2023.07.21.550045. Preprint.
ABSTRACT
Drug repurposing is a strategy for identifying new uses of approved or investigational drugs that are outside the scope of the original medical indication. Even though many repurposed drugs have been found serendipitously in the past, the increasing availability of large volumes of biomedical data has enabled more systemic, data-driven approaches for drug candidate identification. At National Center of Advancing Translational Sciences (NCATS), we invent new methods to generate new data and information publicly available to spur innovation and scientific discovery. In this study, we aimed to explore and demonstrate biomedical data generated and collected via two NCATS research programs, the Toxicology in the 21st Century program (Tox21) and the Biomedical Data Translator (Translator) for the application of drug repurposing. These two programs provide complementary types of biomedical data from uncovering underlying biological mechanisms with bioassay screening data from Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined from the Translator towards drug repurposing. 129 chemical clusters have been generated and three of them have been further investigated for drug repurposing candidate identification, which is detailed as case studies.
PMID:37546930 | PMC:PMC10401966 | DOI:10.1101/2023.07.21.550045
AI molecular property prediction for Parkinson's Disease reveals potential repurposing drug candidates based on the increase of the expression of PINK1
Comput Methods Programs Biomed. 2023 Jul 31;241:107731. doi: 10.1016/j.cmpb.2023.107731. Online ahead of print.
ABSTRACT
BACKGROUND AND OBJECTIVE: Parkinson's Disease (PD), a common neurodegenerative disorder and one of the major current challenges in neuroscience and pharmacology, may potentially be tackled by the modern AI techniques employed in drug discovery based on molecular property prediction. The aim of our study was to explore the application of a machine learning setup for the identification of the best potential drug candidates among FDA approved drugs, based on their predicted PINK1 expression-enhancing activity.
METHODS: Our study relies on supervised machine learning paradigm exploiting in vitro data and utilizing the scaffold splits methodology in order to assess model's capability to extract molecular patterns and generalize from them to new, unseen molecular representations. Models' predictions are combined in a meta-ensemble setup for finding new pharmacotherapies based on the predicted expression of PINK1.
RESULTS: The proposed machine learning setup can be used for discovering new drugs for PD based on the predicted increase of expression of PINK1. Our study identified nitazoxanide as well as representatives of imidazolidines, trifluoromethylbenzenes, anilides, nitriles, stilbenes and steroid esters as the best potential drug candidates for PD with PINK1 expression-enhancing activity on or inside the cell's mitochondria.
CONCLUSIONS: The applied methodology allows to reveal new potential drug candidates against PD. Next to novel indications, it allows also to confirm the utility of already known antiparkinson drugs, in the new context of PINK1 expression, and indicates the potential for simultaneous utilization of different mechanisms of action.
PMID:37544165 | DOI:10.1016/j.cmpb.2023.107731
Anti-virulence prospects of Metformin against Pseudomonas aeruginosa: A new dimension to a multifaceted drug
Microb Pathog. 2023 Aug 2:106281. doi: 10.1016/j.micpath.2023.106281. Online ahead of print.
ABSTRACT
Metformin (MeT) is an FDA-approved drug with a myriad of health benefits. Besides being used as an anti-diabetic drug, MeT is also effective against various cancers, liver-, cardiovascular-, and renal diseases. This study was undertaken to examine its unique potential as an anti-virulence drug against an opportunistic bacterial pathogen, Pseudomonas aeruginosa. Due to the menace of multidrug resistance in pathogenic microorganisms, many novel or repurposed drugs with anti-virulence prospects are emerging as next-generation therapies with the aim to overshadow the application of existing antimicrobial regimens. The quorum sensing (QS) mechanisms of P. aeruginosa are an attractive drug target for attenuating bacterial virulence. In this context, the anti-QS potential of MeT was scrutinized using biosensor assays. MeT was comprehensively evaluated for its effects on different motility phenotypes, virulence factor production (phenotypic and genotypic expression) along with biofilm development in P. aeruginosa in vitro. At sub-lethal concentrations, MeT displayed prolific quorum quenching (QQ) ability and remarkably inhibited AHL biosynthesis in P. aeruginosa. Moreover, MeT (1/8 MIC) effectively downregulated the expression levels of various QS- and virulence genes in P. aeruginosa, which coincided with a notable reduction in the levels of alginate, hemolysin, pyocyanin, pyochelin, elastase, and protease production. In silico analysis through molecular docking also predicted strong associations between MeT and QS receptors of P. aeruginosa. MeT also compromised the motility phenotypes and successfully abrogated biofilm formation by inhibiting EPS production in P. aeruginosa. Hence, MeT may be repurposed as an anti-virulence drug against P. aeruginosa in clinical settings.
PMID:37541553 | DOI:10.1016/j.micpath.2023.106281
Artificial Intelligence Assisted Repurposing of Lubiprostone Alleviates Tubulointerstitial Fibrosis
Transl Res. 2023 Aug 2:S1931-5244(23)00128-7. doi: 10.1016/j.trsl.2023.07.010. Online ahead of print.
ABSTRACT
Tubulointerstitial fibrosis (TIF) is the most prominent cause which leads to chronic kidney disease (CKD) and end-stage renal failure. Despite extensive research, there have been many clinical trial failures, and there is currently no effective treatment to cure renal fibrosis. This demonstrates the necessity of more effective therapies and better preclinical models to screen potential drugs for TIF. In this study, we investigated the anti-fibrotic effect of the machine learning-based repurposed drug, Lubiprostone, validated through an advanced proximal tubule on a chip system and in vivo UUO mice model. Lubiprostone significantly downregulated TIF biomarkers including connective tissue growth factor (CTGF), extracellular matrix deposition (Fibronectin and collagen), transforming growth factor (TGF-β) downstream signaling markers especially, Smad-2/3, Matrix metalloproteinase (MMP2/9), Plasminogen Activator Inhibitor-1 (PAI-1), EMT and JAK/STAT-3 pathway expression in the proximal tubule on a chip model and UUO model compared to the conventional 2D culture. These findings suggest that the proximal tubule on a chip model is a more physiologically relevant model for studying and identifying potential biomarkers for fibrosis compared to conventional in vitro 2D culture and alternative of an animal model. In conclusion, the high throughput Proximal tubule-on-chip system shows improved in vivo-like function and indicates the potential utility for renal fibrosis drug screening. Additionally, repurposed Lubiprostone shows an effective potency to treat TIF via inhibiting 3 major profibrotic signaling pathways such as TGFβ/Smad, JAK/STAT, and epithelial-mesenchymal transition (EMT) and restores kidney function.
PMID:37541485 | DOI:10.1016/j.trsl.2023.07.010
Recent Advances in Antiarrhythmic Drug Therapy
Drugs. 2023 Aug 4. doi: 10.1007/s40265-023-01923-3. Online ahead of print.
ABSTRACT
Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic targets and agents in the development pipeline has decreased substantially during the last few decades. However, several promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for patients suffering from cardiac arrhythmias.
PMID:37540446 | DOI:10.1007/s40265-023-01923-3
Idiopathic Pulmonary Fibrosis Molecular Substrates Revealed by Competing Endogenous RNA Regulatory Networks
OMICS. 2023 Aug 4. doi: 10.1089/omi.2023.0072. Online ahead of print.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic disease of the lung with poor prognosis. Fibrosis results from remodeling of the interstitial tissue. A wide range of gene expression changes are observed, but the role of micro RNAs (miRNAs) and circular RNAs (circRNA) is still unclear. Therefore, this study aimed to establish an messenger RNA (mRNA)-miRNA-circRNA competing endogenous RNA (ceRNA) regulatory network to uncover novel molecular signatures using systems biology tools. Six datasets were used to determine differentially expressed genes (DEGs) and miRNAs (DEmiRNA). Accordingly, protein-protein, mRNA-miRNA, and miRNA-circRNA interactions were constructed. Modules were determined and further analyzed in the Drug Gene Budger platform to identify potential therapeutic compounds. We uncovered common 724 DEGs and 278 DEmiRNAs. In the protein-protein interaction network, TMPRSS4, ESR2, TP73, CLEC4E, and TP63 were identified as hub protein coding genes. The mRNA-miRNA interaction network revealed two modules composed of ADRA1A, ADRA1B, hsa-miR-484 and CDH2, TMPRSS4, and hsa-miR-543. The DEmiRNAs in the modules further analyzed to propose potential circRNA regulators in the ceRNA network. These results help deepen the understanding of the mechanisms of IPF. In addition, the molecular leads reported herein might inform future innovations in diagnostics and therapeutics research and development for IPF.
PMID:37540140 | DOI:10.1089/omi.2023.0072
Novel MBLs inhibitors screened from FDA-approved drug library restore the susceptibility of carbapenems to NDM-1-harbouring bacteria
Br J Pharmacol. 2023 Aug 4. doi: 10.1111/bph.16210. Online ahead of print.
ABSTRACT
BACKGROUND AND PURPOSE: The production of metallo-β-lactamases (MBLs) is one of the major mechanisms adopted by bacterial pathogens to resist carbapenems. Repurposing approved drugs to restore the efficacy of carbapenems represents an efficient and cost-effective approach to fight infections caused by carbapenem resistant pathogens.
EXPERIMENTAL APPROACH: The nitrocefin hydrolysis assay was employed to screen potential NDM-1 inhibitors from a commercially available U.S. Food and Drug Administration (FDA) -approved drug library. The mechanism of inhibition was clarified by metal restoration, inductively coupled plasma mass spectrometry (ICP-MS) and molecular dynamics simulation. The in vitro synergistic antibacterial effect of the identified inhibitors with meropenem was determined by the checkerboard minimum inhibitory concentration (MIC) assay, time-dependent killing assay and combined disc test. Three mouse infection models were used to further evaluate the in vivo therapeutic efficacy of combined therapy.
KEY RESULTS: Twelve FDA-approved compounds were initially screened to neutralize the ability of NDM-1 to hydrolyse nitrocefin. Among these compounds, dexrazoxane, embelin, candesartan cilexetil (CAN) and nordihydroguaiaretic acid (NDGA) were further demonstrated to inhibit all tested MBLs, and showed an in vitro synergistic bactericidal effect with meropenem against MBLs-producing bacteria. Dexrazoxane, embelin and CAN are metal ion chelating agents, while the inhibition of NDM-1 by NDGA involves its direct binding with the active region of NDM-1. Furthermore, these four drugs dramatically rescued the treatment efficacy of meropenem in three infection models.
CONCLUSIONS AND IMPLICATIONS: Our observations indicated that dexrazoxane, embelin, CAN and NDGA are promising carbapenem adjuvants against MBLs-positive carbapenem resistant bacterial pathogens.
PMID:37539785 | DOI:10.1111/bph.16210
Bioinformatics and systems biology analysis revealed PMID26394986-Compound-10 as potential repurposable drug against covid-19
J Biomol Struct Dyn. 2023 Aug 3:1-14. doi: 10.1080/07391102.2023.2242500. Online ahead of print.
ABSTRACT
The global health pandemic known as COVID-19, which stems from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a significant concern worldwide. Several treatment methods exist for COVID-19; however, there is an urgent demand for previously established drugs and vaccines to effectively combat the disease. Since, discovering new drugs poses a significant challenge, making the repurposing of existing drugs can potentially reduce time and costs compared to developing entirely new drugs from scratch. The objective of this study is to identify hub genes and associated repurposed drugs targeting them. We analyzed differentially expressed genes (DEGs) by analyzing RNA-seq transcriptomic datasets and integrated with genes associated with COVID-19 present in different databases. We detected 173 Covid-19 associated genes for the construction of a protein-protein interaction (PPI) network which resulted in the identification of the top 10 hub genes/proteins (STAT1, IRF7, MX1, IRF9, ISG15, OAS3, OAS2, OAS1, IRF3, and IRF1). Hub genes were subjected to GO functional and KEGG pathway enrichment analyses, which indicated some key roles and signaling pathways that were strongly related to SARS-CoV-2 infections. We conducted drug repurposing analysis using CMap, TTD, and DrugBank databases with these 10 hub genes, leading to the identification of Piceatannol, CKD-712, and PMID26394986-Compound-10 as top-ranked candidate drugs. Finally, drug-gene interactions analysis through molecular docking and validated via molecular dynamic simulation for 80 ns suggests PMID26394986-Compound-10 as the only potential drug. Our research demonstrates how in silico analysis might produce repurposing candidates to help respond faster to new disease outbreaks.Communicated by Ramaswamy H. Sarma.
PMID:37534820 | DOI:10.1080/07391102.2023.2242500
Structural-Based Virtual Screening of FDA-Approved Drugs Repository for NSP16 Inhibitors, Essential for SARS-COV-2 Invasion Into Host Cells: Elucidation From MM/PBSA Calculation
Bioinform Biol Insights. 2023 Jul 31;17:11779322231171777. doi: 10.1177/11779322231171777. eCollection 2023.
ABSTRACT
NSP16 is one of the structural proteins of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) necessary for its entrance to the host cells. It exhibits 2'O-methyl-transferase (2'O-MTase) activity of NSP16 using methyl group from S-adenosyl methionine (SAM) by methylating the 5-end of virally encoded mRNAs and shields viral RNA, and also controls its replication as well as infection. In the present study, we used in silico approaches of drug repurposing to target and inhibit the SAM binding site in NSP16 using Food and Drug Administration (FDA)-approved small molecules set from Drug Bank database. Among the 2 456 FDA-approved molecules, framycetin, paromomycin, and amikacin were found to be significant binders against the SAM binding cryptic pocket of NSP16 with docking score of -13.708, -14.997 and -15.841 kcal/mol, respectively. Classical molecular dynamics (MD) simulation and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA)-based binding free energy calculation depicted that all these three framycetin, paromomycin, and amikacin might be promising therapeutic leads towards SARS-CoV-2 infections via host immune escape inhibition pathway.
PMID:37533429 | PMC:PMC10392196 | DOI:10.1177/11779322231171777
Inhibitors of the Mechanistic Target of Rapamycin Can Ameliorate Bortezomib-Induced Peripheral Neuropathy
Biol Pharm Bull. 2023;46(8):1049-1056. doi: 10.1248/bpb.b22-00861.
ABSTRACT
Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.
PMID:37532556 | DOI:10.1248/bpb.b22-00861
Cryogenic X-ray crystallographic studies of biomacromolecules at Turkish Light Source "<em>Turkish DeLight</em>"
Turk J Biol. 2023 Jan 11;47(1):1-13. doi: 10.55730/1300-0152.2637. eCollection 2023.
ABSTRACT
X-ray crystallography is a robust and powerful structural biology technique that provides high-resolution atomic structures of biomacromolecules. Scientists use this technique to unravel mechanistic and structural details of biological macromolecules (e.g., proteins, nucleic acids, protein complexes, protein-nucleic acid complexes, or large biological compartments). Since its inception, single-crystal cryocrystallography has never been performed in Türkiye due to the lack of a single-crystal X-ray diffractometer. The X-ray diffraction facility recently established at the University of Health Sciences, İstanbul, Türkiye will enable Turkish and international researchers to easily perform high-resolution structural analysis of biomacromolecules from single crystals. Here, we describe the technical and practical outlook of a state-of-the-art home-source X-ray, using lysozyme as a model protein. The methods and practice described in this article can be applied to any biological sample for structural studies. Therefore, this article will be a valuable practical guide from sample preparation to data analysis.
PMID:37529114 | PMC:PMC10387866 | DOI:10.55730/1300-0152.2637
Automated High-Throughput, High-Content 3D Imaging of Intact Pancreatic Islets
SLAS Discov. 2023 Jul 30:S2472-5552(23)00052-7. doi: 10.1016/j.slasd.2023.07.003. Online ahead of print.
ABSTRACT
Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.
PMID:37527729 | DOI:10.1016/j.slasd.2023.07.003
Novel treatments against airway inflammation in COPD based on drug repurposing
Adv Pharmacol. 2023;98:225-247. doi: 10.1016/bs.apha.2023.04.005. Epub 2023 May 8.
ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.
PMID:37524488 | DOI:10.1016/bs.apha.2023.04.005
Identification of a novel 5-methylcytosine-related signature for prognostic prediction of kidney renal papillary cell carcinoma and a Putative target for drug repurposing
Transl Oncol. 2023 Jul 29;36:101741. doi: 10.1016/j.tranon.2023.101741. Online ahead of print.
ABSTRACT
BACKGROUND: Many studies have demonstrated the crucial roles of 5-methylcytosine (m5C) RNA methylation in cancer pathogenesis.
METHODS: Two datasets, including TCGA-KIRP and ICGC, and related clinical information were downloaded, where the expression of 13 m5C regulators was examined. We applied LASSO regression to construct a multi-m5C-regulator-based signature in the TCGA cohort, which was further validated using the ICGC cohort. Univariate and multivariate Cox regressions were applied to evaluate the independent prognostic value of our model. The differences in biological functions and immune characterizations between high and low-risk groups divided based on the risk scores were also investigated via multiple approaches, such as enrichment analyses, mutation mining, and immune scoring. Finally, the sensitivities of commonly used targeted drugs were tested, and the connectivity MAP (cMAP) was utilized to screen potentially effective molecules for patients in the high-risk group. Experimental validation was done following qPCR tests in Caki-2 and HK-2 cell lines.
RESULTS: 3 m5C regulators, including ALYREF, DNMT3B and YBX1, were involved in our model. Survival analysis revealed a worse prognosis for patients in the high-risk group. Cox regression results indicated our model's superior predictive performance compared to single-factor prognostic evaluation. Functional enrichment analyses indicated a higher mutation frequency and poorer tumor microenvironment of patients in the high-risk group. qPCR-based results revealed that ALYREF, DNMT3B, and YBX1 were significantly up-regulated in Caki-2 cell lines compared with HK-2 cell lines. Molecules like BRD-K72451865, Levosimendan, and BRD-K03515135 were advised by cMAP for patients in the high-risk group.
CONCLUSION: Our study presented a novel predictive model for KIRP prognosis. Furthermore, the results of our analysis provide new insights for investigating m5C events in KIRP pathogenesis.
PMID:37523897 | DOI:10.1016/j.tranon.2023.101741
Repurposing Marketed Drugs as Antidepressants with In Silico, In Vivo, and In Vitro Screening Methods
Adv Exp Med Biol. 2023;1423:271-278. doi: 10.1007/978-3-031-31978-5_27.
ABSTRACT
Drug repurposing is a strategy to identify new therapeutic uses for marketed drugs, discontinued or shelved drugs, and drug candidates in clinical development. Drug repurposing has gained momentum over the past few years. A slow rate of new drug discovery and higher cost of new drug development attracted the attention for repurposing and repositioning of old medications . A deeper understanding of the pathogenesis of depression encourages novel discoveries through drug repurposing to treat depression. In this study, indole- and isatin-containing drugs are going to be repurposed using computational methods for the treatment of depression.
PMID:37525054 | DOI:10.1007/978-3-031-31978-5_27
A soft-computation hybrid method for search of the antibiotic-resistant gene in <em>Mycobacterium tuberculosis</em> for promising drug target identification and antimycobacterial lead discovery
Bioinform Adv. 2023 Jul 27;3(1):vbad090. doi: 10.1093/bioadv/vbad090. eCollection 2023.
ABSTRACT
Tuberculosis (TB) control programs were already piloted before the COVID-19 pandemic commenced and the global TB response was amplified by the pandemic. To combat the global TB epidemic, drug repurposing, novel drug discovery, identification and targeting of the antimicrobial resistance (AMR) genes, and addressing social determinants of TB are required. The study aimed to identify AMR genes in Mycobacterium tuberculosis (MTB) and a new anti-mycobacterial drug candidate. In this research, we used a few software to explore some AMR genes as a target protein in MTB and identified some potent antimycobacterial agents. We used Maestro v12.8 software, along with STRING v11.0, KEGG and Pass Server databases to gain a deeper understanding of MTB AMR genes as drug targets. Computer-aided analysis was used to identify mtrA and katG AMR genes as potential drug targets to depict some antimycobacterial drug candidates. Based on docking scores of -4.218 and -6.161, carvacrol was identified as a potent inhibitor against both drug targets. This research offers drug target identification and discovery of antimycobacterial leads, a unique and promising approach to combating the challenge of antibiotic resistance in Mycobacterium, and contributes to the development of a potential futuristic solution.
PMID:37521310 | PMC:PMC10382254 | DOI:10.1093/bioadv/vbad090
Antineoplastic effects of sodium dichloroacetate and omeprazole, alone or in combination, on canine oral mucosal melanoma cells
Front Vet Sci. 2023 Jul 13;10:1186650. doi: 10.3389/fvets.2023.1186650. eCollection 2023.
ABSTRACT
Oral mucosal melanoma (OMM) is a common neoplasm in canines, although it is rare in humans. Cancer cells present alterations in energetic metabolism, and the Warburg effect states that most cancer cells undergo aerobic glycolysis. This can be reversed by certain drugs, resulting in decreased cell viability and cell death. We sought to evaluate the effects of sodium dichloroacetate (DCA) and omeprazole (OMP) alone or in combination on canine OMM and human melanoma cells. CMGD5 and SK-MEL-28 cell lines were treated with DCA and OMP alone or in combination, and cell viability was assessed using the crystal violet assay. Cell death (apoptosis and necrosis) was assessed by Annexin V and propidium iodide (PI) staining assays using flow cytometry. In addition, the oxygen consumption rate (OCR) was evaluated using a SeaHorse XF assay. Treatment with DCA or OMP alone resulted in a significant, but not dose-dependent, reduction in cell viability in both cell lines; however, the combination of DCA and OMP resulted in a significant and dose-dependent decrease in viability in both cell lines. DCA and OMP, alone or in combination, did not alter OCR at the concentrations tested in either cell line. Since the combination of DCA and OMP potentialized the inhibition of viability and increased cell death in a synergistic manner in melanoma cells, this approach may represent a new repurposing strategy to treat cancer.
PMID:37520008 | PMC:PMC10373870 | DOI:10.3389/fvets.2023.1186650
Repurposing of Tibolone in Alzheimer's Disease
Biomolecules. 2023 Jul 13;13(7):1115. doi: 10.3390/biom13071115.
ABSTRACT
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
PMID:37509151 | PMC:PMC10377087 | DOI:10.3390/biom13071115