Drug Repositioning
Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor
Comput Struct Biotechnol J. 2023 Jul 7;21:3490-3502. doi: 10.1016/j.csbj.2023.07.007. eCollection 2023.
ABSTRACT
Renal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue. To date, the incidence of CKD is still increasing, and the biomarkers of the pathophysiologic processes of CKD are not clear. Therefore, the identification of novel therapeutic targets associated with the progression of CKD is an attractive issue. It is a critical necessity to discover new therapeutics as nephroprotective strategies to stop CKD progression. In this research, we focus on targeting a prostaglandin E2 receptor (EP2) as a nephroprotective strategy for the development of additional anti-inflammatory or antifibrotic strategies for CKD. The in silico study identified that ritodrine, dofetilide, dobutamine, and citalopram are highly related to EP2 from the results of chemical database virtual screening. Furthermore, we found that the above four candidate drugs increased the activation of autophagy in human kidney cells, which also reduced the expression level of fibrosis and NLRP3 inflammasome activation. It is hoped that these findings of the four candidates with anti-NLRP3 inflammasome activation and antifibrotic effects will lead to the development of novel therapies for patients with CKD in the future.
PMID:37484490 | PMC:PMC10362296 | DOI:10.1016/j.csbj.2023.07.007
RDKG-115: Assisting drug repurposing and discovery for rare diseases by trimodal knowledge graph embedding
Comput Biol Med. 2023 Jul 17;164:107262. doi: 10.1016/j.compbiomed.2023.107262. Online ahead of print.
ABSTRACT
Rare diseases (RDs) may affect individuals in small numbers, but they have a significant impact on a global scale. Accurate diagnosis of RDs is challenging, and there is a severe lack of drugs available for treatment. Pharmaceutical companies have shown a preference for drug repurposing from existing drugs developed for other diseases due to the high investment, high risk, and long cycle involved in RD drug development. Compared to traditional approaches, knowledge graph embedding (KGE) based methods are more efficient and convenient, as they treat drug repurposing as a link prediction task. KGE models allow for the enrichment of existing knowledge by incorporating multimodal information from various sources. In this study, we constructed RDKG-115, a rare disease knowledge graph involving 115 RDs, composed of 35,643 entities, 25 relations, and 5,539,839 refined triplets, based on 372,384 high-quality literature and 4 biomedical datasets: DRKG, Pathway Commons, PharmKG, and PMapp. Subsequently, we developed a trimodal KGE model containing structure, category, and description embeddings using reverse-hyperplane projection. We utilized this model to infer 4199 reliable new inferred triplets from RDKG-115. Finally, we calculated potential drugs and small molecules for each of the 115 RDs, taking multiple sclerosis as a case study. This study provides a paradigm for large-scale screening of drug repurposing and discovery for RDs, which will speed up the drug development process and ultimately benefit patients with RDs. The source code and data are available at https://github.com/ZhuChaoY/RDKG-115.
PMID:37481946 | DOI:10.1016/j.compbiomed.2023.107262
Molecular bases of comorbidities: present and future perspectives
Trends Genet. 2023 Jul 21:S0168-9525(23)00134-8. doi: 10.1016/j.tig.2023.06.003. Online ahead of print.
ABSTRACT
Co-occurrence of diseases decreases patient quality of life, complicates treatment choices, and increases mortality. Analyses of electronic health records present a complex scenario of comorbidity relationships that vary by age, sex, and cohort under study. The study of similarities between diseases using 'omics data, such as genes altered in diseases, gene expression, proteome, and microbiome, are fundamental to uncovering the origin of, and potential treatment for, comorbidities. Recent studies have produced a first generation of genetic interpretations for as much as 46% of the comorbidities described in large cohorts. Integrating different sources of molecular information and using artificial intelligence (AI) methods are promising approaches for the study of comorbidities. They may help to improve the treatment of comorbidities, including the potential repositioning of drugs.
PMID:37482451 | DOI:10.1016/j.tig.2023.06.003
Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX
Sci Rep. 2023 Jul 21;13(1):11783. doi: 10.1038/s41598-023-39071-z.
ABSTRACT
In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the pipeline's ability to identify inhibitors, we chose enzymes essential for SARS-CoV-2 replication as a test system. The active-site cavities of the viral enzymes main protease (Mpro) and papain-like protease (Plpro), as well as of the human transmembrane serine protease 2 (TMPRSS2), were selected as target cavities. Using active-site point-cloud comparisons, it was possible to identify two compounds-flufenamic acid and fusidic acid-which show strong inhibition of viral replication. The complexes from which fusidic acid and flufenamic acid were derived would not have been identified using classical sequence- and structure-based methods as they show very little structural (TM-score: 0.1 and 0.09, respectively) and very low sequence (~ 5%) identity to Mpro and TMPRSS2, respectively. Furthermore, a cavity-based off-target screening was performed using acetylcholinesterase (AChE) as an example. Using cavity comparisons, the human carboxylesterase was successfully identified, which is a described off-target for AChE inhibitors.
PMID:37479788 | DOI:10.1038/s41598-023-39071-z
Repurposing Drugs: An Empowering Approach to Drug Discovery and Development
Drug Res (Stuttg). 2023 Jul 21. doi: 10.1055/a-2095-0826. Online ahead of print.
ABSTRACT
Drug discovery and development is a time-consuming and costly procedure that necessitates a substantial effort. Drug repurposing has been suggested as a method for developing medicines that takes less time than developing brand new medications and will be less expensive. Also known as drug repositioning or re-profiling, this strategy has been in use from the time of serendipitous drug discoveries to the modern computer aided drug designing and use of computational chemistry. In the light of the COVID-19 pandemic too, drug repurposing emerged as a ray of hope in the dearth of available medicines. Data availability by electronic recording, libraries, and improvements in computational techniques offer a vital substrate for systemic evaluation of repurposing candidates. In the not-too-distant future, it could be possible to create a global research archive for us to access, thus accelerating the process of drug development and repurposing. This review aims to present the evolution, benefits and drawbacks including current approaches, key players and the legal and regulatory hurdles in the field of drug repurposing. The vast quantities of available data secured in multiple drug databases, assisting in drug repurposing is also discussed.
PMID:37478892 | DOI:10.1055/a-2095-0826
<em>Correction to:</em> Multi-Omics and Artificial Intelligence-Guided Drug Repositioning: Prospects, Challenges, and Lessons Learned from COVID-19, by Cong and Endo. <em>OMICS</em> 2022;26(7):361-371; doi: 10.1089/omi.2022.0068
OMICS. 2023 Jul 21. doi: 10.1089/omi.2023.29094.correx. Online ahead of print.
NO ABSTRACT
PMID:37477879 | DOI:10.1089/omi.2023.29094.correx
Mebendazole targets essential proteins in glucose metabolism leading gastric cancer cells to death
Toxicol Appl Pharmacol. 2023 Jul 18:116630. doi: 10.1016/j.taap.2023.116630. Online ahead of print.
ABSTRACT
Gastric cancer (GC) is among the most-diagnosed and deadly malignancies worldwide. Deregulation in cellular bioenergetics is a hallmark of cancer. Based on the importance of metabolic reprogramming for the development and cancer progression, inhibitors of cell metabolism have been studied as potential candidates for chemotherapy in oncology. Mebendazole (MBZ), an antihelminthic approved by FDA, has shown antitumoral activity against cancer cell lines. However, its potential in the modulation of tumoral metabolism remains unclear. Results evidenced that the antitumoral and cytotoxic mechanism of MBZ in GC cells is related to the modulation of the mRNA expression of glycolic targets SLC2A1, HK1, GAPDH, and LDHA. Moreover, in silico analysis has shown that these genes are overexpressed in GC samples, and this increase in expression is related to decreased overall survival rates. Molecular docking revealed that MBZ modifies the protein structure of these targets, which may lead to changes in their protein function. In vitro studies also showed that MBZ induces alterations in glucose uptake, LDH's enzymatic activity, and ATP production. Furthermore, MBZ induced morphologic and intracellular alterations typical of the apoptotic cell death pathway. Thus, this data indicated that the cytotoxic mechanism of MBZ is related to an initial modulation of the tumoral metabolism in the GC cell line. Altogether, our results provide more evidence about the antitumoral mechanism of action of MBZ towards GC cells and reveal metabolic reprogramming as a potential area in the discovery of new pharmacological targets for GC chemotherapy.
PMID:37473966 | DOI:10.1016/j.taap.2023.116630
Identification of drug repurposing candidates for the treatment of anxiety: A genetic approach
Psychiatry Res. 2023 Jul 11;326:115343. doi: 10.1016/j.psychres.2023.115343. Online ahead of print.
ABSTRACT
Anxiety disorders are a group of prevalent and heritable neuropsychiatric diseases. We previously conducted a genome-wide association study (GWAS) which identified genomic loci associated with anxiety; however, the biological consequences underlying the genetic associations are largely unknown. Integrating GWAS and functional genomic data may improve our understanding of the genetic effects on intermediate molecular phenotypes such as gene expression. This can provide an opportunity for the discovery of drug targets for anxiety via drug repurposing. We used the GWAS summary statistics to determine putative causal genes for anxiety using MAGMA and colocalization analyses. A transcriptome-wide association study was conducted to identify genes with differential genetically regulated levels of gene expression in human brain tissue. The genes were integrated with a large drug-gene expression database (Connectivity Map), discovering compounds that are predicted to "normalise" anxiety-associated expression changes. The study identified 64 putative causal genes associated with anxiety (35 genes upregulated; 29 genes downregulated). Drug mechanisms adrenergic receptor agonists, sigma receptor agonists, and glutamate receptor agonists gene targets were enriched in anxiety-associated genetic signal and exhibited an opposing effect on the anxiety-associated gene expression signature. The significance of the project demonstrated genetic links for novel drug candidates to potentially advance anxiety therapeutics.
PMID:37473490 | DOI:10.1016/j.psychres.2023.115343
DREAM: an R package for druggability evaluation of human complex diseases
Bioinformatics. 2023 Jul 20:btad442. doi: 10.1093/bioinformatics/btad442. Online ahead of print.
ABSTRACT
MOTIVATION: De novo drug development is a long and expensive process that poses significant challenges from the design to the pre-clinical testing, making the introduction into the market slow and difficult. This limitation paved the way to the development of drug repurposing, which consists in the re-usage of already approved drugs, developed for other therapeutic indications. Although several efforts have been carried out in the last decade in order to achieve clinically relevant drug repurposing predictions, the amount of repurposed drugs that have been employed in actual pharmacological therapies is still limited. On one hand, mechanistic approaches, including profile-based and network-based methods, exploit the wealth of data about drug sensitivity and perturbational profiles as well as disease transcriptomics profiles. On the other hand, chemocentric approaches, including structure-based methods, take into consideration the intrinsic structural properties of the drugs and their molecular targets. The poor integration between mechanistic and chemocentric approaches is one of the main limiting factors behind the poor translatability of drug repurposing predictions into the clinics.
RESULTS: In this work, we introduce DREAM, an R package aimed to integrate mechanistic and chemocentric approaches in a unified computational workflow. DREAM is devoted to the druggability evaluation of pathological conditions of interest, leveraging robust drug repurposing predictions. In addition, the user can derive optimised sets of drugs putatively suitable for combination therapy. In order to show the functionalities of the DREAM package, we report a case study on atopic dermatitis.
AVAILABILITY: DREAM is freely available at https://github.com/fhaive/dream. The docker image of DREAM is available at: https://hub.docker.com/r/fhaive/dream.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:37471593 | DOI:10.1093/bioinformatics/btad442
Bachmann-Bupp syndrome and treatment
Dev Med Child Neurol. 2023 Jul 19. doi: 10.1111/dmcn.15687. Online ahead of print.
ABSTRACT
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
PMID:37469105 | DOI:10.1111/dmcn.15687
A deep learning-based drug repurposing screening and validation for anti-SARS-CoV-2 compounds by targeting the cell entry mechanism
Biochem Biophys Res Commun. 2023 Jul 12;675:113-121. doi: 10.1016/j.bbrc.2023.07.018. Online ahead of print.
ABSTRACT
The recent outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a severe threat to the global public health and economy, however, effective drugs to treat COVID-19 are still lacking. Here, we employ a deep learning-based drug repositioning strategy to systematically screen potential anti-SARS-CoV-2 drug candidates that target the cell entry mechanism of SARS-CoV-2 virus from 2635 FDA-approved drugs and 1062 active ingredients from Traditional Chinese Medicine herbs. In silico molecular docking analysis validates the interactions between the top compounds and host receptors or viral spike proteins. Using a SARS-CoV-2 pseudovirus system, we further identify several drug candidates including Fostamatinib, Linagliptin, Lysergol and Sophoridine that can effectively block the cell entry of SARS-CoV-2 variants into human lung cells even at a nanomolar scale. These efforts not only illuminate the feasibility of applying deep learning-based drug repositioning for antiviral agents by targeting a specified mechanism, but also provide a valuable resource of promising drug candidates or lead compounds to treat COVID-19.
PMID:37467664 | DOI:10.1016/j.bbrc.2023.07.018
Editorial: The challenges of drug repurposing in diseases related to chronic inflammation
Front Pharmacol. 2023 Jul 3;14:1242880. doi: 10.3389/fphar.2023.1242880. eCollection 2023.
NO ABSTRACT
PMID:37465521 | PMC:PMC10351978 | DOI:10.3389/fphar.2023.1242880
Leveraging Generative AI to Prioritize Drug Repurposing Candidates: Validating Identified Candidates for Alzheimer's Disease in Real-World Clinical Datasets
medRxiv. 2023 Jul 8:2023.07.07.23292388. doi: 10.1101/2023.07.07.23292388. Preprint.
ABSTRACT
Drug repurposing represents an attractive alternative to the costly and time-consuming process of new drug development, particularly for serious, widespread conditions with limited effective treatments, such as Alzheimer's disease (AD). Emerging generative artificial intelligence (GAI) technologies like ChatGPT offer the promise of expediting the review and summary of scientific knowledge. To examine the feasibility of using GAI for identifying drug repurposing candidates, we iteratively tasked ChatGPT with proposing the twenty most promising drugs for repurposing in AD, and tested the top ten for risk of incident AD in exposed and unexposed individuals over age 65 in two large clinical datasets: 1) Vanderbilt University Medical Center and 2) the All of Us Research Program. Among the candidates suggested by ChatGPT, metformin, simvastatin, and losartan were associated with lower AD risk in meta-analysis. These findings suggest GAI technologies can assimilate scientific insights from an extensive Internet-based search space, helping to prioritize drug repurposing candidates and facilitate the treatment of diseases.
PMID:37461512 | PMC:PMC10350158 | DOI:10.1101/2023.07.07.23292388
Repurposing drugs to treat trichinellosis: in vitro analysis of the anthelmintic activity of nifedipine and Chrysanthemum coronarium extract
BMC Complement Med Ther. 2023 Jul 17;23(1):242. doi: 10.1186/s12906-023-04076-8.
ABSTRACT
Albendazole is the most common benzimidazole derivative used for trichinellosis treatment but has many drawbacks. The quest for alternative compounds is, therefore, a target for researchers. This work aims to assess the in vitro anthelmintic effect of nifedipine, a calcium channel blocker, and a methanol extract of the flowers of Chrysanthemum coronarium as therapeutic repurposed drugs for treating different developmental stages of Trichinella spiralis in comparison with the reference drug, albendazole. Adult worms and muscle larvae of Trichinella spiralis were incubated with different concentrations of the studied drugs. Drug effects were evaluated by parasitological and electron microscopic examination.As a result, the effects of these drugs on muscle larvae were time and dose-dependent. Moreover, the LC50 after 48 h incubation was 81.25 µg/ml for albendazole, 1.24 µg/ml for nifedipine, and 229.48 µg/ml for C. coronarium. Also, the effects of the tested drugs were prominent on adult worms as the LC50 was 89.77 µg/ml for albendazole, 1.87 µg/ml for nifedipine, and 124.66 µg/ml for C. coronarium. SEM examination of the tegument of T. spiralis adult worms and larvae showed destruction of the adult worms' tegument in all treated groups. The tegument morphological changes were in the form of marked swellings or whole body collapse with the disappearance of internal contents. Furthermore, in silico studies showed that nifedipine might act as a T. spiralis β-tubulin polymerization inhibitor.Our results suggest that nifedipine and C. coronarium extract may be useful therapeutic agents for treating trichinellosis and warrant further assessment in animal disease models.
PMID:37461016 | PMC:PMC10351179 | DOI:10.1186/s12906-023-04076-8
Drug Repurposing-Based Brain-Targeting Self-Assembly Nanoplatform Using Enhanced Ferroptosis against Glioblastoma
Small. 2023 Jul 17:e2303073. doi: 10.1002/smll.202303073. Online ahead of print.
ABSTRACT
Glioblastoma (GBM), the most aggressive and lethal form of malignant brain tumor, is a therapeutic challenge due to the drug filtration capabilities of the blood-brain barrier (BBB). Interestingly, glioblastoma tends to resist apoptosis during chemotherapy, but is susceptible to ferroptosis. Developing therapies that can effectively target glioblastoma by crossing the BBB and evoke ferroptosis are, therefore, crucial for improving treatment outcomes. Herein, a versatile biomimetic nanoplatform, L-D-I/NPs, is designed that self-assembled by loading the antimalarial drug dihydroartemisinin (DHA) and the photosensitizer indocyanine green (ICG) onto lactoferrin (LF). This nanoplatform can selectively target glioblastoma by binding to low-density lipoprotein receptor-related protein-1 (LRP1) and crossing the BBB, thus inducing glioblastoma cell ferroptosis by boosting intracellular reactive oxygen species (ROS) accumulation and iron overload. In addition, L-D-I/NPs have demonstrated the ability to effectively suppress the progression of orthotopic glioblastoma and significantly prolong survival in a mouse glioblastoma model. This nanoplatform has facilitated the application of non-chemotherapeutic drugs in tumor treatment with minimal adverse effects, paving the way for highly efficient ferroptosis-based therapies for glioblastoma.
PMID:37460404 | DOI:10.1002/smll.202303073
Proxalutamide reduces SARS-CoV-2 infection and associated inflammatory response
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2221809120. doi: 10.1073/pnas.2221809120. Epub 2023 Jul 17.
ABSTRACT
Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.
PMID:37459541 | DOI:10.1073/pnas.2221809120
Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study
J Biomol Struct Dyn. 2023 Jul 17:1-12. doi: 10.1080/07391102.2023.2236714. Online ahead of print.
ABSTRACT
The COVID-19 pandemic has caused havoc around the globe since 2019 and is considered the largest global epidemic of the twentieth century. Although the first antiviral drug, Remdesivir, was initially introduced against COVID‑19, virtually no tangible therapeutic drugs exist to treat SARS-CoV-2 infection. FDA-approved Paxlovid (Nirmatrelvir supplemented by Ritonavir) was recently announced as a promising drug against the SARS-CoV-2 major protease (Mpro). Here we report for the first time the remarkable inhibitory potentials of lead epigenetic-targeting drugs (epi-drugs) against SARS-CoV-2 Mpro. Epi-drugs are promising compounds to be used in combination with cancer chemotherapeutics to regulate gene expression. The search for all known epi-drugs for the specific inhibition of SARS-CoV-2 Mpro was performed for the first time by consensus (three high-order program) molecular docking studies and end-state free energy calculations. Several epi-drugs were identified with highly comparable binding affinity to SARS-CoV-2 Mpro compared to Nirmatrelvir. In particular, potent histone methyltransferase inhibitor EPZ005687 and DNA methyltransferase inhibitor Guadecitabine were prominent as the most promising epi-drug inhibitors for SARS-CoV-2 Mpro. Long Molecular dynamics (MD) simulations (200 ns each) and corresponding MM-GBSA calculations confirmed the stability of the EPZ005687-Mpro complex with MM-GBSA binding free energy (ΔGbind) -48.2 kcal/mol (EPZ005687) compared to Nirmatrelvir (-44.7 kcal/mol). Taken together, the antiviral activities of the highlighted epi-drugs are reported beyond widespread use in combination with anti-cancer agents. The current findings therefore highlight as yet unexplored antiviral potential of epi-drugs suitable for use in patients struggling with chronic immunosuppressive disorders.Communicated by Ramaswamy H. Sarma.
PMID:37458994 | DOI:10.1080/07391102.2023.2236714
Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders
Mol Neurobiol. 2023 Jul 17. doi: 10.1007/s12035-023-03502-9. Online ahead of print.
ABSTRACT
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
PMID:37458987 | DOI:10.1007/s12035-023-03502-9
Therapeutic Switching of Rafoxanide: a New Approach To Fighting Drug-Resistant Bacteria and Fungi
Microbiol Spectr. 2023 Jul 17:e0267922. doi: 10.1128/spectrum.02679-22. Online ahead of print.
ABSTRACT
Control and management of life-threatening bacterial and fungal infections are a global health challenge. Despite advances in antimicrobial therapies, treatment failures for resistant bacterial and fungal infections continue to increase. We aimed to repurpose the anthelmintic drug rafoxanide for use with existing therapeutic drugs to increase the possibility of better managing infection and decrease treatment failures. For this purpose, we evaluated the antibacterial and antifungal potential of rafoxanide. Notably, 70% (70/100) of bacterial isolates showed multidrug resistance (MDR) patterns, with higher prevalence among human isolates (73.5% [50/68]) than animal ones (62.5% [20/32]). Moreover, 22 fungal isolates (88%) were MDR and were more prevalent among animal (88.9%) than human (87.5%) sources. We observed alarming MDR patterns among bacterial isolates, i.e., Klebsiella pneumoniae (75% [30/40; 8 animal and 22 human]) and Escherichia coli (66% [40/60; 12 animal and 28 human]), and fungal isolates, i.e., Candida albicans (86.7% [13/15; 4 animal and 9 human]) and Aspergillus fumigatus (90% [9/10; 4 animal and 5 human]), that were resistant to at least one agent in three or more different antimicrobial classes. Rafoxanide had antibacterial and antifungal activities, with minimal inhibitory concentration (MICs) ranging from 2 to 128 μg/mL. Rafoxanide at sub-MICs downregulated the mRNA expression of resistance genes, including E. coli and K. pneumoniae blaCTX-M-1, blaTEM-1, blaSHV, MOX, and DHA, C. albicans ERG11, and A. fumigatus cyp51A. We noted the improvement in the activity of β-lactam and antifungal drugs upon combination with rafoxanide. This was apparent in the reduction in the MICs of cefotaxime and fluconazole when these drugs were combined with sub-MIC levels of rafoxanide. There was obvious synergism between rafoxanide and cefotaxime against all E. coli and K. pneumoniae isolates (fractional inhibitory concentration index [FICI] values ≤ 0.5). Accordingly, there was a shift in the patterns of resistance of 16.7% of E. coli and 22.5% of K. pneumoniae isolates to cefotaxime and those of 63.2% of C. albicans and A. fumigatus isolates to fluconazole when the isolates were treated with sub-MICs of rafoxanide. These results were confirmed by in silico and mouse protection assays. Based on the in silico study, one possible explanation for how rafoxanide reduced bacterial resistance is through its inhibitory effects on bacterial and fungal histidine kinase enzymes. In short, rafoxanide exhibited promising results in overcoming bacterial and fungal drug resistance. IMPORTANCE The drug repurposing strategy is an alternative approach to reducing drug development timelines with low cost, especially during outbreaks of disease caused by drug-resistant pathogens. Rafoxanide can disrupt the abilities of bacterial and fungal cells to adapt to stress conditions. The coadministration of antibiotics with rafoxanide can prevent the failure of treatment of both resistant bacteria and fungi, as the resistant pathogens could be made sensitive upon treatment with rafoxanide. From our findings, we anticipate that pharmaceutical companies will be able to utilize new combinations against resistant pathogens.
PMID:37458598 | DOI:10.1128/spectrum.02679-22
Repurposing synthetic and natural derivatives induces apoptosis in an orthotopic glioma-induced xenograft model by modulating WNT/β-catenin signaling
Fundam Clin Pharmacol. 2023 Jul 17. doi: 10.1111/fcp.12932. Online ahead of print.
ABSTRACT
BACKGROUND: Glioblastomas arise from multistep tumorigenesis of the glial cells. Despite the current state-of-art treatment, tumor recurrence is inevitable. Among the innovations blooming up against glioblastoma, drug repurposing could provide profound premises for treatment enhancement. While considering this strategy, the efficacy of the repurposed drugs as monotherapies were not up to par; hence, the focus has now shifted to investigate the multidrug combinations.
AIM: To investigate the efficacy of a quadruple-combinatorial treatment comprising temozolomide along with chloroquine, naringenin, and phloroglucinol in an orthotopic glioma-induced xenograft model.
METHODS: Antiproliferative effect of the drugs was assessed by immunostaining. The expression profiles of WNT/β-catenin and apoptotic markers were evaluated by qRT-PCR, immunoblotting, and ELISA. Patterns of mitochondrial depolarization was determined by flow cytometry. TUNEL assay was performed to affirm apoptosis induction. In vivo drug detection study was carried out by ESI-Q-TOF MS analysis.
RESULTS: The quadruple-drug treatment had significantly hampered glioma proliferation and had induced apoptosis by modulating the WNT/β-catenin signaling. Interestingly, the induction of apoptosis was associated with mitochondrial depolarization. The quadruple-drug cocktail had breached the blood-brain barrier and was detected in the brain tissue and plasma samples.
CONCLUSION: The quadruple-drug combination served as a promising adjuvant therapy to combat glioblastoma lethality in vivo and can be probed for translation from bench to bedside.
PMID:37458120 | DOI:10.1111/fcp.12932