Systems Biology

Mutant RB1 enhances therapeutic efficacy of PARPis in lung adenocarcinoma by triggering the cGAS/STING pathway

Wed, 2023-11-08 06:00

JCI Insight. 2023 Nov 8;8(21):e165268. doi: 10.1172/jci.insight.165268.

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved for cancer therapy according to their synthetic lethal interactions, and clinical trials have been applied in non-small cell lung cancer. However, the therapeutic efficacy of PARPis in lung adenocarcinoma (LUAD) is still unknown. We explored the effect of a mutated retinoblastoma gene (RB1) on PARPi sensitivity in LUAD. Bioinformatic screening was performed to identify PARPi-sensitive biomarkers. Here, we showed that viability of LUAD cell lines with mutated RB1 was significantly decreased by PARPis (niraparib, rucaparib, and olaparib). RB1 deficiency induced genomic instability, prompted cytosolic double-stranded DNA (dsDNA) formation, activated the cGAS/STING pathway, and upregulated downstream chemokines CCL5 and CXCL10, triggering immune cell infiltration. Xenograft experiments indicated that PARPi treatment reduced tumorigenesis in RB1-KO mice. Additionally, single-cell RNA sequencing analysis showed that malignant cells with downregulated expression of RB1 had more communications with other cell types, exhibiting activation of specific signaling such as GAS, IFN response, and antigen-presenting and cytokine activities. Our findings suggest that RB1 mutation mediates the sensitivity to PARPis through a synthetic lethal effect by triggering the cGAS/STING pathway and upregulation of immune infiltration in LUAD, which may be a potential therapeutic strategy.

PMID:37937640 | DOI:10.1172/jci.insight.165268

Categories: Literature Watch

Top-Down Proteomics and the Challenges of True Proteoform Characterization

Wed, 2023-11-08 06:00

J Proteome Res. 2023 Nov 8. doi: 10.1021/acs.jproteome.3c00416. Online ahead of print.

ABSTRACT

Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.

PMID:37937372 | DOI:10.1021/acs.jproteome.3c00416

Categories: Literature Watch

Functional Consequences of Shifting Transcript Boundaries in Glucose Starvation

Wed, 2023-11-08 06:00

Mol Cell Biol. 2023 Nov 8:1-18. doi: 10.1080/10985549.2023.2270406. Online ahead of print.

ABSTRACT

Glucose is a major source of carbon and essential for the survival of many organisms, ranging from yeast to human. A sudden 60-fold reduction of glucose in exponentially growing fission yeast induces transcriptome-wide changes in gene expression. This regulation is multilayered, and the boundaries of transcripts are known to vary, with functional consequences at the protein level. By combining direct RNA sequencing with 5'-CAGE and short-read sequencing, we accurately defined the 5'- and 3'-ends of transcripts that are both poly(A) tailed and 5'-capped in glucose starvation, followed by proteome analysis. Our results confirm previous experimentally validated loci with alternative isoforms and reveal several transcriptome-wide patterns. First, we show that sense-antisense gene pairs are more strongly anticorrelated when a time lag is taken into account. Second, we show that the glucose starvation response initially elicits a shortening of 3'-UTRs and poly(A) tails, followed by a shortening of the 5'-UTRs at later time points. These result in domain gains and losses in proteins involved in the stress response. Finally, the relatively poor overlap both between differentially expressed genes (DEGs), differential transcript usage events (DTUs), and differentially detected proteins (DDPs) highlight the need for further study on post-transcriptional regulation mechanisms in glucose starvation.

PMID:37937348 | DOI:10.1080/10985549.2023.2270406

Categories: Literature Watch

Genome-scale metabolic models consistently predict <em>in vitro</em> characteristics of <em>Corynebacterium striatum</em>

Wed, 2023-11-08 06:00

Front Bioinform. 2023 Oct 23;3:1214074. doi: 10.3389/fbinf.2023.1214074. eCollection 2023.

ABSTRACT

Introduction: Genome-scale metabolic models (GEMs) are organism-specific knowledge bases which can be used to unravel pathogenicity or improve production of specific metabolites in biotechnology applications. However, the validity of predictions for bacterial proliferation in in vitro settings is hardly investigated. Methods: The present work combines in silico and in vitro approaches to create and curate strain-specific genome-scale metabolic models of Corynebacterium striatum. Results: We introduce five newly created strain-specific genome-scale metabolic models (GEMs) of high quality, satisfying all contemporary standards and requirements. All these models have been benchmarked using the community standard test suite Metabolic Model Testing (MEMOTE) and were validated by laboratory experiments. For the curation of those models, the software infrastructure refineGEMs was developed to work on these models in parallel and to comply with the quality standards for GEMs. The model predictions were confirmed by experimental data and a new comparison metric based on the doubling time was developed to quantify bacterial growth. Discussion: Future modeling projects can rely on the proposed software, which is independent of specific environmental conditions. The validation approach based on the growth rate calculation is now accessible and closely aligned with biological questions. The curated models are freely available via BioModels and a GitHub repository and can be used. The open-source software refineGEMs is available from https://github.com/draeger-lab/refinegems.

PMID:37936955 | PMC:PMC10626998 | DOI:10.3389/fbinf.2023.1214074

Categories: Literature Watch

DOMAIN OF UNKNOWN FUNCTION581-9 negatively regulates SnRK1 kinase activity

Wed, 2023-11-08 06:00

Plant Physiol. 2023 Nov 4:kiad594. doi: 10.1093/plphys/kiad594. Online ahead of print.

ABSTRACT

In plants, sucrose nonfermenting 1 (SNF1)-related protein kinase 1 (SnRK1) is a key energy-sensor that orchestrates large-scale transcriptional reprogramming to maintain cellular homeostasis under energy deficit. SnRK1 activity is under tight negative control, although the exact mechanisms leading to its activation are not well understood. We show that the Arabidopsis (Arabidopsis thaliana) DOMAIN OF UNKNOWN FUNCTION (DUF581) protein DUF581-9/FCS-like zinc finger (FLZ) 3 binds to the catalytic SnRK1.1 α subunit (KIN10) to inhibit its activation by geminivirus rep-interacting kinase (GRIK)-dependent T-loop phosphorylation. Overexpression of DUF581-9 in Arabidopsis dampens SnRK1 signalling and interferes with adaptation to dark-induced starvation. The presence of DUF581-9 significantly reduced SnRK1 activity in protoplasts and in vitro. This was accompanied by a reduction in T175 T-loop phosphorylation and also diminished KIN10 auto-phosphorylation. Furthermore, DUF581-9 reduced binding of the up-stream activating kinase GRIK2 to KIN10, explaining the reduced KIN10 T-loop phosphorylation. Ectopically expressed DUF581-9 protein was rapidly turned over by the proteasome when Arabidopsis plants were subjected to starvation treatment, likely releasing its inhibitory activity on the SnRK1 complex. Taken together, our results support a model in which DUF581-9 negatively regulates SnRK1 activity under energy sufficient conditions. Turnover of the protein provides a rapid way for SnRK1 activation under energy deficit without the need of de novo protein synthesis.

PMID:37936321 | DOI:10.1093/plphys/kiad594

Categories: Literature Watch

Loss of ADAR1 in macrophages in combination with interferon gamma suppresses tumor growth by remodeling the tumor microenvironment

Tue, 2023-11-07 06:00

J Immunother Cancer. 2023 Nov;11(11):e007402. doi: 10.1136/jitc-2023-007402.

ABSTRACT

BACKGROUND: ADAR1, the major enzyme for RNA editing, has emerged as a tumor-intrinsic key determinant for cancer immunotherapy efficacy through modulating interferon-mediated innate immunity. However, the role of ADAR1 in innate immune cells such as macrophages remains unknown.

METHODS: We first analyzed publicly accessible patient-derived single-cell RNA-sequencing and perturbed RNA sequencing data to elucidate the ADAR1 expression and function in macrophages. Subsequently, we evaluated the combined effects of ADAR1 conditional knockout in macrophages and interferon (IFN)-γ treatment on tumor growth in three distinct disease mouse models: LLC for lung cancer, B16-F10 for melanoma, and MC38 for colon cancer. To gain the mechanistic insights, we performed human cytokine arrays to identify differentially secreted cytokines in response to ADAR1 perturbations in THP-1 cells. Furthermore, we examined the effects of ADAR1 loss and IFN-γ treatment on vessel formation through immunohistochemical staining of mouse tumor sections and tube-forming experiments using HUVEC and SVEC4-10 cells. We also assessed the effects on CD8+ T cells using immunofluorescent and immunohistochemical staining and flow cytometry. To explore the translational potential, we examined the consequences of injecting ADAR1-deficient macrophages alongside IFN-γ treatment on tumor growth in LLC-tumor-bearing mice.

RESULTS: Our analysis on public data suggests that ADAR1 loss in macrophages promotes antitumor immunity as in cancer cells. Indeed, ADAR1 loss in macrophages combined with IFN-γ treatment results in tumor regression in diverse disease mouse models. Mechanistically, the loss of ADAR1 in macrophages leads to the differential secretion of key cytokines: it inhibits the translation of CCL20, GDF15, IL-18BP, and TIM-3 by activating PKR/EIF2α signaling but increases the secretion of IFN-γ through transcriptional upregulation and interleukin (IL)-18 due to the 5'UTR uORF. Consequently, decreased CCL20 and GDF15 and increased IFN-γ suppress angiogenesis, while decreased IL-18BP and TIM-3 and increased IL-18 induce antitumor immunity by enhancing cytotoxicity of CD8+ T cells. We further demonstrate that combination therapy of injecting ADAR1-deficient macrophages and IFN-γ effectively suppresses tumors in vivo.

CONCLUSION: This study provides a comprehensive elucidation of how ADAR1 loss within macrophages contributes to the establishment of an antitumor microenvironment, suggesting the therapeutic potential of targeting ADAR1 beyond the scope of cancer cells.

PMID:37935565 | DOI:10.1136/jitc-2023-007402

Categories: Literature Watch

Spt5 interacts genetically with Myc and is limiting for brain tumor growth in <em>Drosophila</em>

Tue, 2023-11-07 06:00

Life Sci Alliance. 2023 Nov 7;7(1):e202302130. doi: 10.26508/lsa.202302130. Print 2024 Jan.

ABSTRACT

The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.

PMID:37935464 | DOI:10.26508/lsa.202302130

Categories: Literature Watch

Characterizing Different Modes of Interplay between Rap1 and H3 using Inducible H3-depletion Yeast

Tue, 2023-11-07 06:00

J Mol Biol. 2023 Nov 5:168355. doi: 10.1016/j.jmb.2023.168355. Online ahead of print.

ABSTRACT

Histones and transcription factors (TFs) are two important DNA-binding proteins that interact, compete, and together regulate transcriptional processes in response to diverse internal and external stimuli. Condition-specific depletion of histones in Saccharomyces cerevisiae using a galactose-inducible H3 promoter provides a suitable framework for examining transcriptional alteration resulting from reduced nucleosome content. However, the effect on DNA binding activities of TFs is yet to be fully explored. In this work, we combine ChIP-seq of H3 with RNA-seq to elucidate the genome-scale relationships between H3 occupancy patterns and transcriptional dynamics before and after global H3 depletion. ChIP-seq of Rap1 is also conducted in the H3-depletion and control treatments, to investigate the interplay between this master regulator TF and nucleosomal H3, and to explore the impact on diverse transcriptional responses of different groups of target genes and functions. Ultimately, we propose a working model and testable hypotheses regarding the impact of global and local H3 depletion on transcriptional changes. We also demonstrate different potential modes of interaction between Rap1 and H3, which sheds light on the potential multifunctional regulatory capabilities of Rap1 and potentially other pioneer factors.

PMID:37935256 | DOI:10.1016/j.jmb.2023.168355

Categories: Literature Watch

Genome-wide identification of overexpression and downregulation gene targets based on the sum of covariances of the outgoing reaction fluxes

Tue, 2023-11-07 06:00

Cell Syst. 2023 Oct 29:S2405-4712(23)00297-1. doi: 10.1016/j.cels.2023.10.005. Online ahead of print.

ABSTRACT

In metabolic engineering, predicting gene overexpression targets remains challenging because both endogenous and heterologous genes in a large metabolic space can be candidates, in contrast to gene knockout targets that are confined to endogenous genes. We report the development of iBridge that identifies positive and negative metabolites exerting positive and negative impacts on product formation, respectively, based on the sum of covariances of their outgoing (consuming) reaction fluxes for a target chemical. Then, "bridge" reactions converting negative metabolites to positive metabolites are identified as overexpression targets, while the opposites as downregulation targets. Using iBridge, overexpression and downregulation targets are suggested for the production of 298 chemicals and validated for 36 chemicals experimentally demonstrated in previous studies. Finally, iBridge is employed to engineer Escherichia coli strains capable of producing 10.3 g/L of D-panthenol, a compound not previously produced, as well as putrescine and 4-hydroxyphenyllactate at enhanced titers, 63.7 and 8.3 g/L, respectively.

PMID:37935194 | DOI:10.1016/j.cels.2023.10.005

Categories: Literature Watch

Spatial Variation in the Inflammatory Response of House Sparrows in their Native Range

Tue, 2023-11-07 06:00

Ecohealth. 2023 Nov 7. doi: 10.1007/s10393-023-01652-9. Online ahead of print.

ABSTRACT

Characterizing spatial differences in wildlife immunity is the first step to identify environmental drivers of host defense and disease risks. The house sparrow (Passer domesticus) is a model system for ecoimmunology, but spatial differences in immunity have been largely restricted to the invasive range of this global species. We provide an initial test of spatial variation in immune response to phytohemagglutinin in the native range, finding that birds from Romania have greater inflammatory responses than birds from Egypt. Future broad surveys across the house sparrow native range could contextualize these differences and determine underlying drivers.

PMID:37936004 | DOI:10.1007/s10393-023-01652-9

Categories: Literature Watch

Transcriptional reprogramming by mutated IRF4 in lymphoma

Tue, 2023-11-07 06:00

Nat Commun. 2023 Nov 7;14(1):6947. doi: 10.1038/s41467-023-41954-8.

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.

PMID:37935654 | DOI:10.1038/s41467-023-41954-8

Categories: Literature Watch

PTIR1 acts as an isoform of DDX58 and promotes tumor immune resistance through activation of UCHL5

Tue, 2023-11-07 06:00

Cell Rep. 2023 Nov 6;42(11):113388. doi: 10.1016/j.celrep.2023.113388. Online ahead of print.

ABSTRACT

Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer. Through blocking the recruitment of leukocytes, PTIR1 facilitates cancer immune escape and tumor-intrinsic resistance to immunotherapeutic treatments. Unlike RIG-I, PTIR1 is capable of binding to the C terminus of UCHL5 and activates its ubiquitinating function, which in turn inhibits immunoproteasome activity and limits neoantigen processing and presentation, consequently blocking T cell recognition and attack against cancer. Moreover, we find that the adenosine deaminase ADAR1 induces A-to-I RNA editing on DDX58 transcript, thus triggering PTIR1 production. Collectively, our data uncover the immunosuppressive role of PTIR1 in tumorigenesis and propose that ADAR1-PTIR1-UCHL5 signaling is a potential cancer immunotherapeutic target.

PMID:37934668 | DOI:10.1016/j.celrep.2023.113388

Categories: Literature Watch

Physiological and genomic characterization of Lactiplantibacillus plantarum isolated from Indri indri in Madagascar

Tue, 2023-11-07 06:00

J Appl Microbiol. 2023 Nov 2:lxad255. doi: 10.1093/jambio/lxad255. Online ahead of print.

ABSTRACT

AIMS: Indri indri is a lemur of Madagascar which is Critically Endangered. The analysis of the microbial ecology of the intestine offers tools to improve conservation efforts. This study aimed to achieve a functional genomic analysis of three Lp. plantarum isolates from indris.

METHODS AND RESULTS: Samples were obtained from 18 indri; 3 isolates of Lp. plantarum were obtained from 2 individuals. The three isolates were closely related to each other, with fewer than 10 single nucleotide polymorphisms, suggesting that the two individuals shared diet-associated microbes. The genomes of the three isolates were compared to 96 reference strains of Lp. plantarum. The three isolates of Lp. plantarum were not phenotypically resistant to antibiotics but shared all 17 genes related to antimicrobial resistance that are part of the core genome of Lp. plantarum. Genomes of the three indri isolates of Lp. plantarum also encoded for the 6 core genome genes coding for enzymes related to metabolism of hydroxybenzoic and hydroxycinnamic acids. The phenotype for metabolism of hydroxycinnamic acids by indri isolates of Lp. plantarum matched the genotype.

CONCLUSIONS: Multiple antimicrobial resistance genes and gene coding for metabolism of phenolic compounds were identified in the genomes of the indri isolates, suggesting that Lp. plantarum maintains antimicrobial resistance in defense of antimicrobial plant secondary pathogens and that their metabolism by intestinal bacteria aids digestion of plant material by primate hosts.

PMID:37934609 | DOI:10.1093/jambio/lxad255

Categories: Literature Watch

Development of a rapid, sensitive detection method for SARS-CoV-2 and influenza virus based on recombinase polymerase amplification combined with CRISPR-Cas12a assay

Tue, 2023-11-07 06:00

J Med Virol. 2023 Nov;95(11):e29215. doi: 10.1002/jmv.29215.

ABSTRACT

Respiratory tract infections are associated with the most common diseases transmitted among people and remain a huge threat to global public health. Rapid and sensitive diagnosis of causative agents is critical for timely treatment and disease control. Here, we developed a novel method based on recombinase polymerase amplification (RPA) combined with CRISPR-Cas12a to detect three viral pathogens, including SARS-CoV-2, influenza A, and influenza B, which cause similar symptom complexes of flu cold in the respiratory tract. The detection method can be completed within 1 h, which is faster than other standard detection methods, and the limit of detection is approximately 102 copies/μL. Additionally, this detection system is highly specific and there is no cross-reactivity with other common respiratory tract pathogens. Based on this assay, we further developed a more simplified RPA/CRISPR-Cas12a system combined with lateral flow assay on a manual microfluidic chip, which can simultaneously detect these three viruses. This low-cost detection system is rapid and sensitive, which could be applied in the field and resource-limited areas without bulky and expensive instruments, providing powerful tools for the point-of-care diagnostic.

PMID:37933907 | DOI:10.1002/jmv.29215

Categories: Literature Watch

Spotlight on overlooked lignin monomers: hydroxycinnamaldehydes

Tue, 2023-11-07 06:00

Plant Physiol. 2023 Nov 2:kiad589. doi: 10.1093/plphys/kiad589. Online ahead of print.

NO ABSTRACT

PMID:37933704 | DOI:10.1093/plphys/kiad589

Categories: Literature Watch

100 years of anthropogenic impact causes changes in freshwater functional biodiversity

Tue, 2023-11-07 06:00

Elife. 2023 Nov 7;12:RP86576. doi: 10.7554/eLife.86576.

ABSTRACT

Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate. Unless we find transformative solutions to preserve biodiversity, future generations may not be able to enjoy nature's services. We have developed a conceptual framework that establishes the links between biodiversity dynamics and abiotic change through time and space using artificial intelligence. Here, we apply this framework to a freshwater ecosystem with a known history of human impact and study 100 years of community-level biodiversity, climate change and chemical pollution trends. We apply explainable network models with multimodal learning to community-level functional biodiversity measured with multilocus metabarcoding, to establish correlations with biocides and climate change records. We observed that the freshwater community assemblage and functionality changed over time without returning to its original state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined with extreme temperature events and precipitation, explained up to 90% of the functional biodiversity changes. The community-level biodiversity approach used here reliably explained freshwater ecosystem shifts. These shifts were not observed when using traditional quality indices (e.g. Trophic Diatom Index). Our study advocates the use of high-throughput systemic approaches on long-term trends over species-focused ecological surveys to identify the environmental factors that cause loss of biodiversity and disrupt ecosystem functions.

PMID:37933221 | DOI:10.7554/eLife.86576

Categories: Literature Watch

MGI short-read genome assemblies of Pythium insidiosum (reclassified as Pythium periculosum) strains Pi057C3 and Pi050C3

Tue, 2023-11-07 06:00

BMC Res Notes. 2023 Nov 6;16(1):316. doi: 10.1186/s13104-023-06587-6.

ABSTRACT

OBJECTIVES: Pythium insidiosum causes a difficult-to-treat infectious condition called pythiosis, with high morbidity and mortality. So far, genome data of at least 10 strains of P. insidiosum, primarily classified in the phylogenetic clades I and II, have been sequenced using various next-generation sequencing platforms. The MGI short-read platform was employed to obtain genome data of 2 clade-III strains of P. insidiosum (recently reclassified as Pythium periculosum) from patients in Thailand and the United States. This work is a part of our attempt to generate a comprehensive genome database from diverse pathogen strains.

DATA DESCRIPTION: A 150-bp paired-end library was prepared from a gDNA sample of P. insidiosum (P. periculosum) strains Pi057C3 and Pi050C3 (also known as ATCC90586) to generate draft genome sequences using an MGISEQ-2000RS sequencer. As a result, for the strain Pi057C3, we obtained a 42.5-Mb assembled genome (164x coverage) comprising 14,134 contigs, L50 of 241, N50 of 45,748, 57.6% CG content, and 12,147 ORFs. For the strain Pi050C3, we received a 43.3-Mb draft genome (230x coverage) containing 14,511 contigs, L50 of 245, N50 of 45,208, 57.7% CG content, and 12,249 ORFs. The genome sequences have been deposited in the NCBI/DDBJ databases under the accession numbers JAKCXM000000000.1 (strain Pi057C3) and JAKCXL000000000.1 (strain Pi050C3).

PMID:37932861 | DOI:10.1186/s13104-023-06587-6

Categories: Literature Watch

Genomic characterization of IDH-mutant astrocytoma progression to grade 4 in the treatment setting

Tue, 2023-11-07 06:00

Acta Neuropathol Commun. 2023 Nov 6;11(1):176. doi: 10.1186/s40478-023-01669-9.

ABSTRACT

As the progression of low-grade diffuse astrocytomas into grade 4 tumors significantly impacts patient prognosis, a better understanding of this process is of paramount importance for improved patient care. In this project, we analyzed matched IDH-mutant astrocytomas before and after progression to grade 4 from six patients (discovery cohort) with genome-wide sequencing, 21 additional patients with targeted sequencing, and 33 patients from Glioma Longitudinal AnalySiS cohort for validation. The Cancer Genome Atlas data from 595 diffuse gliomas provided supportive information. All patients in our discovery cohort received radiation, all but one underwent chemotherapy, and no patient received temozolomide (TMZ) before progression to grade 4 disease. One case in the discovery cohort exhibited a hypermutation signature associated with the inactivation of the MSH2 and DNMT3A genes. In other patients, the number of chromosomal rearrangements and deletions increased in grade 4 tumors. The cell cycle checkpoint gene CDKN2A, or less frequently RB1, was most commonly inactivated after receiving both chemo- and radiotherapy when compared to other treatment groups. Concomitant activating PDGFRA/MET alterations were detected in tumors that acquired a homozygous CDKN2A deletion. NRG3 gene was significantly downregulated and recurrently altered in progressed tumors. Its decreased expression was associated with poorer overall survival in both univariate and multivariate analysis. We also detected progression-related alterations in RAD51B and other DNA repair pathway genes associated with the promotion of error-prone DNA repair, potentially facilitating tumor progression. In our retrospective analysis of patient treatment and survival timelines (n = 75), the combination of postoperative radiation and chemotherapy (mainly TMZ) outperformed radiation, especially in the grade 3 tumor cohort, in which it was typically given after primary surgery. Our results provide further insight into the contribution of treatment and genetic alterations in cell cycle, growth factor signaling, and DNA repair-related genes to tumor evolution and progression.

PMID:37932833 | DOI:10.1186/s40478-023-01669-9

Categories: Literature Watch

Identification of quantitative trait loci and associated candidate genes for pregnancy success in Angus-Brahman crossbred heifers

Tue, 2023-11-07 06:00

J Anim Sci Biotechnol. 2023 Nov 7;14(1):137. doi: 10.1186/s40104-023-00940-2.

ABSTRACT

BACKGROUND: In beef cattle, more than 50% of the energy input to produce a unit of beef is consumed by the female that produced the calf. Development of genomic tools to identify females with high genetic merit for reproductive function could increase the profitability and sustainability of beef production.

RESULTS: Genome-wide association studies (GWAS) were performed using a single-step genomic best linear unbiased prediction approach on pregnancy outcome traits from a population of Angus-Brahman crossbred heifers. Furthermore, a validation GWAS was performed using data from another farm. Heifers were genotyped with the Bovine GGP F250 array that contains 221,077 SNPs. In the discovery population, heifers were bred in winter breeding seasons involving a single round of timed artificial insemination (AI) followed by natural mating for 3 months. Two phenotypes were analyzed: pregnancy outcome to first-service AI (PAI; n = 1,481) and pregnancy status at the end of the breeding season (PEBS; n = 1,725). The heritability was estimated as 0.149 and 0.122 for PAI and PEBS, respectively. In the PAI model, one quantitative trait locus (QTL), located between 52.3 and 52.5 Mb on BTA7, explained about 3% of the genetic variation, in a region containing a cluster of γ-protocadherin genes and SLC25A2. Other QTLs explaining between 0.5% and 1% of the genetic variation were found on BTA12 and 25. In the PEBS model, a large QTL on BTA7 was synonymous with the QTL for PAI, with minor QTLs located on BTA5, 9, 10, 11, 19, and 20. The validation population for pregnancy status at the end of the breeding season were Angus-Brahman crossbred heifers bred by natural mating. In concordance with the discovery population, the large QTL on BTA7 and QTLs on BTA10 and 12 were identified.

CONCLUSIONS: In summary, QTLs and candidate SNPs identified were associated with pregnancy outcomes in beef heifers, including a large QTL associated with a group of protocadherin genes. Confirmation of these associations with larger populations could lead to the development of genomic predictions of reproductive function in beef cattle. Moreover, additional research is warranted to study the function of candidate genes associated with QTLs.

PMID:37932831 | DOI:10.1186/s40104-023-00940-2

Categories: Literature Watch

Quantification of evolved DNA-editing enzymes at scale with DEQSeq

Tue, 2023-11-07 06:00

Genome Biol. 2023 Nov 6;24(1):254. doi: 10.1186/s13059-023-03097-3.

ABSTRACT

We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications. Our results demonstrate that DEQSeq is a powerful tool for accelerating enzyme discovery and advancing genome editing research.

PMID:37932818 | DOI:10.1186/s13059-023-03097-3

Categories: Literature Watch

Pages