Systems Biology

Phase-separated biomolecular condensates for biocatalysis

Sat, 2023-11-04 06:00

Trends Biotechnol. 2023 Nov 2:S0167-7799(23)00294-9. doi: 10.1016/j.tibtech.2023.10.003. Online ahead of print.

ABSTRACT

Nature often uses dynamically assembling multienzymatic complexes called metabolons to achieve spatiotemporal control of complex metabolic reactions. Researchers are aiming to mimic this strategy of organizing enzymes to enhance the performance of artificial biocatalytic systems. Biomolecular condensates formed through liquid-liquid phase separation (LLPS) can serve as a powerful tool to drive controlled assembly of enzymes. Diverse enzymatic pathways have been reconstituted within catalytic condensates in vitro as well as synthetic membraneless organelles in living cells. Furthermore, in vivo condensates have been engineered to regulate metabolic pathways by selectively sequestering enzymes. Thus, harnessing LLPS for controlled organization of enzymes provides an opportunity to dynamically regulate biocatalytic processes.

PMID:37925283 | DOI:10.1016/j.tibtech.2023.10.003

Categories: Literature Watch

Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors

Sat, 2023-11-04 06:00

EBioMedicine. 2023 Nov 2;98:104851. doi: 10.1016/j.ebiom.2023.104851. Online ahead of print.

ABSTRACT

BACKGROUND: As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences of COVID-19 are paramount to be identified.

METHODS: Participants for the current study were from a cohort study of COVID-19 survivors discharged from hospital between Jan 7, and May 29, 2020. We profiled the proteomic of plasma samples from hospitalised COVID-19 survivors at 6-month, 1-year, and 2-year after symptom onset and age and sex matched healthy controls. Fold-change of >2 or <0.5, and false-discovery rate adjusted P value of 0.05 were used to filter differentially expressed proteins (DEPs). In-genuity pathway analysis was performed to explore the down-stream effects in the dataset of significantly up- or down-regulated proteins. Proteins were integrated with long-term consequences of COVID-19 survivors to explore potential biomarkers of long COVID.

FINDINGS: The proteomic of 709 plasma samples from 181 COVID-19 survivors and 181 matched healthy controls was profiled. In both COVID-19 and control group, 114 (63%) were male. The results indicated four major recovery modes of biological processes. Pathways related to cell-matrix interactions and cytoskeletal remodeling and hypertrophic cardiomyopathy and dilated cardiomyopathy pathways recovered relatively earlier which was before 1-year after infection. Majority of immune response pathways, complement and coagulation cascade, and cholesterol metabolism returned to similar status of matched healthy controls later but before 2-year after infection. Fc receptor signaling pathway still did not return to status similar to healthy controls at 2-year follow-up. Pathways related to neuron generation and differentiation showed persistent suppression across 2-year after infection. Among 98 DEPs from the above pathways, evidence was found for association of 11 proteins with lung function recovery, with the associations consistent at two consecutive or all three follow-ups. These proteins were mainly enriched in complement and coagulation (COMP, PLG, SERPINE1, SRGN, COL1A1, FLNA, and APOE) and hypertrophic/dilated cardiomyopathy (TPM2, TPM1, and AGT) pathways. Two DEPs (APOA4 and LRP1) involved in both neuron and cholesterol pathways showed associations with smell disorder.

INTERPRETATION: The study findings provided molecular insights into potential mechanism of long COVID, and put forward biomarkers for more precise intervention to reduce burden of long COVID.

FUNDING: National Natural Science Foundation of China; Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Clinical Research Operating Fund of Central High Level Hospitals; the Talent Program of the Chinese Academy of Medical Science; Training Program of the Big Science Strategy Plan; Ministry of Science and Technology of the People's Republic of China; New Cornerstone Science Foundation; Peking Union Medical College Education Foundation; Research Funds from Health@InnoHK Program.

PMID:37924708 | DOI:10.1016/j.ebiom.2023.104851

Categories: Literature Watch

Improving microbial bioproduction under low-oxygen conditions

Sat, 2023-11-04 06:00

Curr Opin Biotechnol. 2023 Nov 2;84:103016. doi: 10.1016/j.copbio.2023.103016. Online ahead of print.

ABSTRACT

Microbial bioconversion provides access to a wide range of sustainably produced chemicals and commodities. However, industrial-scale bioproduction process operations are preferred to be anaerobic due to the cost associated with oxygen transfer. Anaerobic bioconversion generally offers limited substrate utilization profiles, lower product yields, and reduced final product diversity compared with aerobic processes. Bioproduction under conditions of reduced oxygen can overcome the limitations of fully aerobic and anaerobic bioprocesses, but many microbial hosts are not developed for low-oxygen bioproduction. Here, we describe advances in microbial strain engineering involving the use of redox cofactor engineering, genome-scale metabolic modeling, and functional genomics to enable improved bioproduction processes under low oxygen and provide a viable path for scaling these bioproduction systems to industrial scales.

PMID:37924688 | DOI:10.1016/j.copbio.2023.103016

Categories: Literature Watch

Activated mesenchymal stem cells increase drug susceptibility of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa

Sat, 2023-11-04 06:00

Folia Microbiol (Praha). 2023 Nov 4. doi: 10.1007/s12223-023-01099-z. Online ahead of print.

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa are major causes of hospital-acquired infections and sepsis. Due to increasing antibiotic resistance, new treatments are needed. Mesenchymal stem cells (MSCs) have antimicrobial effects, which can be enhanced by preconditioning with antibiotics. This study investigated using antibiotics to strengthen MSCs against MRSA and P. aeruginosa. MSCs were preconditioned with linezolid, vancomycin, meropenem, or cephalosporin. Optimal antibiotic concentrations were determined by assessing MSC survival. Antimicrobial effects were measured by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antimicrobial peptide (AMP) gene expression. Optimal antibiotic concentrations for preconditioning MSCs without reducing viability were 1 μg/mL for linezolid, meropenem, and cephalosporin and 2 μg/mL for vancomycin. In MIC assays, MSCs preconditioned with linezolid, vancomycin, meropenem, or cephalosporin inhibited MRSA or P. aeruginosa growth at lower concentrations than non-preconditioned MSCs (p ≤ 0.001). In MBC assays, preconditioned MSCs showed enhanced bacterial clearance compared to non-preconditioned MSCs, especially when linezolid and vancomycin were used against MRSA (p ≤ 0.05). Preconditioned MSCs showed increased expression of genes encoding the antimicrobial peptide genes hepcidin and LL-37 compared to non-preconditioned MSCs. The highest hepcidin expression was seen with linezolid and vancomycin preconditioning (p ≤ 0.001). The highest LL-37 expression was with linezolid preconditioning (p ≤ 0.001). MSCs' preconditioning with linezolid, vancomycin, meropenem, or cephalosporin at optimal concentrations enhances their antimicrobial effects against MRSA and P. aeruginosa without compromising viability. This suggests preconditioned MSCs could be an effective adjuvant treatment for antibiotic-resistant infections. The mechanism may involve upregulation of AMP genes.

PMID:37924430 | DOI:10.1007/s12223-023-01099-z

Categories: Literature Watch

Limitations of the human iPSC-derived neuron model for early-onset Alzheimer's disease

Sat, 2023-11-04 06:00

Mol Brain. 2023 Nov 3;16(1):75. doi: 10.1186/s13041-023-01063-5.

ABSTRACT

Non-familial Alzheimer's disease (AD) occurring before 65 years of age is commonly referred to as early-onset Alzheimer's disease (EOAD) and constitutes ~ 5-6% of all AD cases (Mendez et al. in Continuum 25:34-51, 2019). While EOAD exhibits the same clinicopathological changes such as amyloid plaques, neurofibrillary tangles (NFTs), brain atrophy, and cognitive decline (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022; Caldwell et al. in Mol Brain 15:83, 2022) as observed in the more prevalent late-onset AD (LOAD), EOAD patients tend to have more severe cognitive deficits, including visuospatial, language, and executive dysfunction (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022). Patient-derived induced pluripotent stem cells (iPSCs) have been used to model and study penetrative, familial AD (FAD) mutations in APP, PSEN1, and PSEN2 (Valdes et al. in Research Square 1-30, 2022; Caldwell et al. in Sci Adv 6:1-16, 2020) but have been seldom used for sporadic forms of AD that display more heterogeneous disease mechanisms. In this study, we sought to characterize iPSC-derived neurons from EOAD patients via RNA sequencing. A modest difference in expression profiles between EOAD patients and non-demented control (NDC) subjects resulted in a limited number of differentially expressed genes (DEGs). Based on this analysis, we provide evidence that iPSC-derived neuron model systems, likely due to the loss of EOAD-associated epigenetic signatures arising from iPSC reprogramming, may not be ideal models for studying sporadic AD.

PMID:37924159 | DOI:10.1186/s13041-023-01063-5

Categories: Literature Watch

Working memory performance is tied to stimulus complexity

Sat, 2023-11-04 06:00

Commun Biol. 2023 Nov 3;6(1):1119. doi: 10.1038/s42003-023-05486-7.

ABSTRACT

Working memory is the cognitive capability to maintain and process information over short periods. Behavioral and computational studies have shown that visual information is associated with working memory performance. However, the underlying neural correlates remain unknown. To identify how visual information affects working memory performance, we conducted behavioral experiments in pigeons (Columba livia) and single unit recordings in the avian prefrontal analog, the nidopallium caudolaterale (NCL). Complex pictures featuring luminance, spatial and color information, were associated with higher working memory performance compared to uniform gray pictures in conjunction with distinct neural coding patterns. For complex pictures, we found a multiplexed neuronal code displaying visual and value-related features that switched to a representation of the upcoming choice during a delay period. When processing gray stimuli, NCL neurons did not multiplex and exclusively represented the choice already during stimulus presentation and throughout the delay period. The prolonged representation possibly resulted in a decay of the memory trace ultimately leading to a decrease in performance. In conclusion, we found that high stimulus complexity is associated with neuronal multiplexing of the working memory representation possibly allowing a facilitated read-out of the neural code resulting in enhancement of working memory performance.

PMID:37923920 | DOI:10.1038/s42003-023-05486-7

Categories: Literature Watch

Ethanol deprivation and central 5-HT deficiency differentially affect the mRNA editing of the 5-HT<sub>2C</sub> receptor in the mouse brain

Sat, 2023-11-04 06:00

Pharmacol Rep. 2023 Nov 3. doi: 10.1007/s43440-023-00545-6. Online ahead of print.

ABSTRACT

BACKGROUND: Serotonin (5-HT) 5-HT2C receptor mRNA editing (at five sites, A-E), implicated in neuropsychiatric disorders, including clinical depression, remains unexplored during alcohol abstinence-often accompanied by depressive symptoms.

METHODS: We used deep sequencing to investigate 5-HT2C receptor editing in mice during early ethanol deprivation following prolonged alcohol exposure and mice lacking tryptophan hydroxylase (TPH)2, a key enzyme in central 5-HT production. We also examined Tph2 expression in ethanol-deprived animals using quantitative real-time PCR (qPCR).

RESULTS: Cessation from chronic 10% ethanol exposure in a two-bottle choice paradigm enhanced immobility time and decreased latency in the forced swim test (FST), indicating a depression-like phenotype. In the hippocampus, ethanol-deprived "high ethanol-drinking" mice displayed reduced Tph2 expression, elevated 5-HT2C receptor editing efficiency, and decreased frequency of the D mRNA variant, encoding the less-edited INV protein isoform. Tph2-/- mice showed attenuated receptor editing in the hippocampus and elevated frequency of non-edited None and D variants. In the prefrontal cortex, Tph2 deficiency increased receptor mRNA editing at site D and reduced the frequency of AB transcript, predicting a reduction in the corresponding partially edited VNI isoform.

CONCLUSIONS: Our findings reveal differential effects of 5-HT depletion and ethanol cessation on 5-HT2C receptor editing. Central 5-HT depletion attenuated editing in the prefrontal cortex and the hippocampus, whereas ethanol deprivation, coinciding with reduced Tph2 expression in the hippocampus, enhanced receptor editing efficiency specifically in this brain region. This study highlights the interplay between 5-HT synthesis, ethanol cessation, and 5-HT2C receptor editing, providing potential mechanism underlying increased ethanol consumption and deprivation.

PMID:37923824 | DOI:10.1007/s43440-023-00545-6

Categories: Literature Watch

Transcriptional profiling of early differentiation of primary human mesenchymal stem cells into chondrocytes

Sat, 2023-11-04 06:00

Sci Data. 2023 Nov 3;10(1):758. doi: 10.1038/s41597-023-02686-y.

ABSTRACT

Articular cartilage has only very limited regenerative capacities in humans. Tissue engineering techniques for cartilage damage repair are limited in the production of hyaline cartilage. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells and can be differentiated into mature cartilage cells, chondrocytes, which could be used for repairing damaged cartilage. Chondrogenesis is a highly complex, relatively inefficient process lasting over 3 weeks in vitro. Methods: In order to better understand chondrogenic differentiation, especially the commitment phase, we have performed transcriptional profiling of MSC differentiation into chondrocytes from early timepoints starting 15 minutes after induction to 16 hours and fully differentiated chondrocytes at 21 days in triplicates.

PMID:37923731 | DOI:10.1038/s41597-023-02686-y

Categories: Literature Watch

Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms

Sat, 2023-11-04 06:00

Nat Commun. 2023 Nov 3;14(1):7065. doi: 10.1038/s41467-023-42694-5.

ABSTRACT

Staphylococcus pseudintermedius is historically understood as a prevalent commensal and pathogen of dogs, though modern clinical diagnostics reveal an expanded host-range that includes humans. It remains unclear whether differentiation across S. pseudintermedius populations is driven primarily by niche-type or host-species. We sequenced 501 diagnostic and commensal isolates from a hospital, veterinary diagnostic laboratory, and within households in the American Midwest, and performed a comparative genomics investigation contrasting human diagnostic, animal diagnostic, human colonizing, pet colonizing, and household-surface S. pseudintermedius isolates. Though indistinguishable by core and accessory gene architecture, diagnostic isolates harbor more encoded and phenotypic resistance, whereas colonizing and surface isolates harbor similar CRISPR defense systems likely reflective of common household phage exposures. Furthermore, household isolates that persist through anti-staphylococcal decolonization report elevated rates of base-changing mutations in - and parallel evolution of - defense genes, as well as reductions in oxacillin and trimethoprim-sulfamethoxazole susceptibility. Together we report parallel niche-specific bolstering of S. pseudintermedius defense mechanisms through gene acquisition or mutation.

PMID:37923729 | DOI:10.1038/s41467-023-42694-5

Categories: Literature Watch

Wnt activation disturbs cell competition and causes diffuse invasion of transformed cells through NF-κB-MMP21 pathway

Sat, 2023-11-04 06:00

Nat Commun. 2023 Nov 3;14(1):7048. doi: 10.1038/s41467-023-42774-6.

ABSTRACT

Normal epithelial cells exert their competitive advantage over RasV12-transformed cells and eliminate them into the apical lumen via cell competition. However, the internal or external factors that compromise cell competition and provoke carcinogenesis remain elusive. In this study, we examine the effect of sequential accumulation of gene mutations, mimicking multi-sequential carcinogenesis on RasV12-induced cell competition in intestinal epithelial tissues. Consequently, we find that the directionality of RasV12-cell extrusion in Wnt-activated epithelia is reversed, and transformed cells are delaminated into the basal lamina via non-cell autonomous MMP21 upregulation. Subsequently, diffusively infiltrating, transformed cells develop into highly invasive carcinomas. The elevated production of MMP21 is elicited partly through NF-κB signaling, blockage of which restores apical elimination of RasV12 cells. We further demonstrate that the NF-κB-MMP21 axis is significantly bolstered in early colorectal carcinoma in humans. Collectively, this study shows that cells with high mutational burdens exploit cell competition for their benefit by behaving as unfit cells, endowing them with an invasion advantage.

PMID:37923722 | DOI:10.1038/s41467-023-42774-6

Categories: Literature Watch

Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging

Sat, 2023-11-04 06:00

Nat Commun. 2023 Nov 3;14(1):7034. doi: 10.1038/s41467-023-42822-1.

ABSTRACT

Aβ peptides derived from the amyloid precursor protein (APP) have been strongly implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP and the importance of that role in neurodegenerative disease is less clear. We recover the Drosophila ortholog of APP, Appl, in an unbiased forward genetic screen for neurodegeneration mutants. We perform comprehensive single cell transcriptional and proteomic studies of Appl mutant flies to investigate Appl function in the aging brain. We find an unexpected role for Appl in control of multiple cellular pathways, including translation, mitochondrial function, nucleic acid and lipid metabolism, cellular signaling and proteostasis. We mechanistically define a role for Appl in regulating autophagy through TGFβ signaling and document the broader relevance of our findings using mouse genetic, human iPSC and in vivo tauopathy models. Our results demonstrate a conserved role for APP in controlling age-dependent proteostasis with plausible relevance to Alzheimer's disease.

PMID:37923712 | DOI:10.1038/s41467-023-42822-1

Categories: Literature Watch

Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer

Fri, 2023-11-03 06:00

Cancer Cell. 2023 Oct 30:S1535-6108(23)00362-8. doi: 10.1016/j.ccell.2023.10.006. Online ahead of print.

ABSTRACT

When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.

PMID:37922910 | DOI:10.1016/j.ccell.2023.10.006

Categories: Literature Watch

Modus operandi: Chromatin recognition by α-helical histone readers

Fri, 2023-11-03 06:00

Structure. 2023 Oct 26:S0969-2126(23)00365-9. doi: 10.1016/j.str.2023.10.008. Online ahead of print.

ABSTRACT

Histone reader domains provide a mechanism for sensing states of coordinated nuclear processes marked by histone proteins' post-translational modifications (PTMs). Among a growing number of discovered histone readers, the 14-3-3s, ankyrin repeat domains (ARDs), tetratricopeptide repeats (TPRs), bromodomains (BRDs), and HEAT domains are a group of domains using various mechanisms to recognize unmodified or modified histones, yet they all are composed of an α-helical fold. In this review, we compare how these readers fold to create protein domains that are very diverse in their tertiary structures, giving rise to intriguing peptide binding mechanisms resulting in vastly different footprints of their targets.

PMID:37922903 | DOI:10.1016/j.str.2023.10.008

Categories: Literature Watch

Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices

Fri, 2023-11-03 06:00

Cell. 2023 Oct 30:S0092-8674(23)01085-1. doi: 10.1016/j.cell.2023.10.003. Online ahead of print.

ABSTRACT

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.

PMID:37922900 | DOI:10.1016/j.cell.2023.10.003

Categories: Literature Watch

Superoxide dismutase A (SodA) is a c-di-GMP effector protein governing oxidative stress tolerance in Stenotrophomonas maltophilia

Fri, 2023-11-03 06:00

Microbiol Res. 2023 Oct 22;278:127535. doi: 10.1016/j.micres.2023.127535. Online ahead of print.

ABSTRACT

C-di-GMP is a bacterial second messenger implicated in the regulation of many key functions including antibiotic tolerance and biofilm formation. Our understanding of how c-di-GMP exerts its action via receptors to modulate different biological functions is still limited. Here we used a c-di-GMP affinity pull-down assay coupled to LC-MS/MS to identify c-di-GMP-binding proteins in the opportunistic pathogen Stenotrophomonas maltophilia. This analysis identified Smlt3238 (SodA), a protein of the superoxide dismutase family, as a c-di-GMP-binding protein. Microscale thermophoresis showed that purified SodA protein bound c-di-GMP with an estimated dissociation constant (Kd) value of 141.5 μM. Using various in vivo and in vitro experiments, we demonstrated that c-di-GMP modulates the enzyme activity of SodA directly. Circular dichroism experiments revealed that SodA protein gradually altered its basic structure with increasing levels of c-di-GMP. Phenotypic experiments conducted in the presence of a range of intracellular c-di-GMP levels showed that SodA function is modulated by c-di-GMP. The findings thus identify a novel c-di-GMP binding protein that governs oxidative stress tolerance in S. maltophilia.

PMID:37922698 | DOI:10.1016/j.micres.2023.127535

Categories: Literature Watch

Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management

Fri, 2023-11-03 06:00

eNeuro. 2023 Nov 3;10(11):ENEURO.0200-23.2023. doi: 10.1523/ENEURO.0200-23.2023. Print 2023 Nov.

ABSTRACT

Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.

PMID:37923391 | DOI:10.1523/ENEURO.0200-23.2023

Categories: Literature Watch

Phenotypic heterogeneity associated with KIF21A: Two new cases and review of the literature

Fri, 2023-11-03 06:00

Am J Med Genet A. 2023 Nov 3. doi: 10.1002/ajmg.a.63455. Online ahead of print.

ABSTRACT

Our understanding of genetic and phenotypic heterogeneity associated with the clinical spectrum of rare diseases continues to expand. Thorough phenotypic descriptions and model organism functional studies are valuable tools in dissecting the biology of the disease process. Kinesin genes are well known to be associated with specific disease phenotypes and a subset of kinesin genes, including KIF21A, have been associated with more than one disease. Here we report two patients with KIF21A variants identified by exome sequencing; one with biallelic variants, supporting a novel KIF21A related syndrome with recessive inheritance and the second report of this condition, and another with a heterozygous de novo variant allele representing a phenotypic expansion of the condition described to date. We provide detailed phenotypic information on both families, including a novel neuropathology finding of neuroaxonal dystrophy associated with biallelic variants in KIF21A. Additionally, we studied the dominant variant in Saccharomyces cerevisiae to assess variant pathogenicity and found that this variant appears to impair protein function. KIF21A associated disease has mounting evidence for phenotypic heterogeneity; further patients and study of an allelic series are required to define the phenotypic spectrum and further explore the molecular etiology for each of these conditions.

PMID:37921537 | DOI:10.1002/ajmg.a.63455

Categories: Literature Watch

Critical assessment of methods of protein structure prediction (CASP)-Round XV

Fri, 2023-11-03 06:00

Proteins. 2023 Nov 2. doi: 10.1002/prot.26617. Online ahead of print.

ABSTRACT

Computing protein structure from amino acid sequence information has been a long-standing grand challenge. Critical assessment of structure prediction (CASP) conducts community experiments aimed at advancing solutions to this and related problems. Experiments are conducted every 2 years. The 2020 experiment (CASP14) saw major progress, with the second generation of deep learning methods delivering accuracy comparable with experiment for many single proteins. There is an expectation that these methods will have much wider application in computational structural biology. Here we summarize results from the most recent experiment, CASP15, in 2022, with an emphasis on new deep learning-driven progress. Other papers in this special issue of proteins provide more detailed analysis. For single protein structures, the AlphaFold2 deep learning method is still superior to other approaches, but there are two points of note. First, although AlphaFold2 was the core of all the most successful methods, there was a wide variety of implementation and combination with other methods. Second, using the standard AlphaFold2 protocol and default parameters only produces the highest quality result for about two thirds of the targets, and more extensive sampling is required for the others. The major advance in this CASP is the enormous increase in the accuracy of computed protein complexes, achieved by the use of deep learning methods, although overall these do not fully match the performance for single proteins. Here too, AlphaFold2 based method perform best, and again more extensive sampling than the defaults is often required. Also of note are the encouraging early results on the use of deep learning to compute ensembles of macromolecular structures. Critically for the usability of computed structures, for both single proteins and protein complexes, deep learning derived estimates of both local and global accuracy are of high quality, however the estimates in interface regions are slightly less reliable. CASP15 also included computation of RNA structures for the first time. Here, the classical approaches produced better agreement with experiment than the new deep learning ones, and accuracy is limited. Also, for the first time, CASP included the computation of protein-ligand complexes, an area of special interest for drug design. Here too, classical methods were still superior to deep learning ones. Many new approaches were discussed at the CASP conference, and it is clear methods will continue to advance.

PMID:37920879 | DOI:10.1002/prot.26617

Categories: Literature Watch

Network-based drug repurposing for HPV-associated cervical cancer

Fri, 2023-11-03 06:00

Comput Struct Biotechnol J. 2023 Oct 19;21:5186-5200. doi: 10.1016/j.csbj.2023.10.038. eCollection 2023.

ABSTRACT

In women, cervical cancer (CC) is the fourth most common cancer around the world with average cases of 604,000 and 342,000 deaths per year. Approximately 50% of high-grade CC are attributed to human papillomavirus (HPV) types 16 and 18. Chances of CC in HPV-positive patients are 6 times more than HPV-negative patients which demands timely and effective treatment. Repurposing of drugs is considered a viable approach to drug discovery which makes use of existing drugs, thus potentially reducing the time and costs associated with de-novo drug discovery. In this study, we present an integrative drug repurposing framework based on a systems biology-enabled network medicine platform. First, we built an HPV-induced CC protein interaction network named HPV2C following the CC signatures defined by the omics dataset, obtained from GEO database. Second, the drug target interaction (DTI) data obtained from DrugBank, and related databases was used to model the DTI network followed by drug target network proximity analysis of HPV-host associated key targets and DTIs in the human protein interactome. This analysis identified 142 potential anti-HPV repurposable drugs to target HPV induced CC pathways. Third, as per the literature survey 51 of the predicted drugs are already used for CC and 33 of the remaining drugs have anti-viral activity. Gene set enrichment analysis of potential drugs in drug-gene signatures and in HPV-induced CC-specific transcriptomic data in human cell lines additionally validated the predictions. Finally, 13 drug combinations were found using a network based on overlapping exposure. To summarize, the study provides effective network-based technique to quickly identify suitable repurposable drugs and drug combinations that target HPV-associated CC.

PMID:37920815 | PMC:PMC10618120 | DOI:10.1016/j.csbj.2023.10.038

Categories: Literature Watch

Biotic countermeasures that rescue <em>Nannochloropsis gaditana</em> from a <em>Bacillus safensis</em> infection

Fri, 2023-11-03 06:00

Front Microbiol. 2023 Oct 18;14:1271836. doi: 10.3389/fmicb.2023.1271836. eCollection 2023.

ABSTRACT

The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass. Bacteriophages offer an unexplored solution to treat bacterial pathogenicity in algal cultures because they can eliminate a single species without affecting the bacteriome. To address this, we identified a highly virulent pathogen of the microalga Nannochloropsis gaditana, the bacterium Bacillus safensis, and demonstrated rescue of the microalgae from the pathogen using phage. 16S rRNA amplicon sequencing showed that phage treatment did not alter the composition of the bacteriome. It is widely suspected that the algal bacteriome could play a protective role against bacterial pathogens. To test this, we compared the susceptibility of a bacteriome-attenuated N. gaditana culture challenged with B. safensis to a N. gaditana culture carrying a growth-promoting bacteriome. We showed that the loss of the bacteriome increased the susceptibility of N. gaditana to the pathogen. Transplanting the microalgal bacteriome to the bacteriome-attenuated culture reconstituted the protective effect of the bacteriome. Finally, the success of phage treatment was dependent on the presence of beneficial bacteriome. This study introduces two synergistic countermeasures against bacterial pathogenicity in algal cultures and a tractable model for studying interactions between microalgae, phages, pathogens, and the algae microbiome.

PMID:37920264 | PMC:PMC10618357 | DOI:10.3389/fmicb.2023.1271836

Categories: Literature Watch

Pages