Systems Biology
Spt5 interacts genetically with Myc and is limiting for brain tumor growth in <em>Drosophila</em>
Life Sci Alliance. 2023 Nov 7;7(1):e202302130. doi: 10.26508/lsa.202302130. Print 2024 Jan.
ABSTRACT
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
PMID:37935464 | DOI:10.26508/lsa.202302130
Characterizing Different Modes of Interplay between Rap1 and H3 using Inducible H3-depletion Yeast
J Mol Biol. 2023 Nov 5:168355. doi: 10.1016/j.jmb.2023.168355. Online ahead of print.
ABSTRACT
Histones and transcription factors (TFs) are two important DNA-binding proteins that interact, compete, and together regulate transcriptional processes in response to diverse internal and external stimuli. Condition-specific depletion of histones in Saccharomyces cerevisiae using a galactose-inducible H3 promoter provides a suitable framework for examining transcriptional alteration resulting from reduced nucleosome content. However, the effect on DNA binding activities of TFs is yet to be fully explored. In this work, we combine ChIP-seq of H3 with RNA-seq to elucidate the genome-scale relationships between H3 occupancy patterns and transcriptional dynamics before and after global H3 depletion. ChIP-seq of Rap1 is also conducted in the H3-depletion and control treatments, to investigate the interplay between this master regulator TF and nucleosomal H3, and to explore the impact on diverse transcriptional responses of different groups of target genes and functions. Ultimately, we propose a working model and testable hypotheses regarding the impact of global and local H3 depletion on transcriptional changes. We also demonstrate different potential modes of interaction between Rap1 and H3, which sheds light on the potential multifunctional regulatory capabilities of Rap1 and potentially other pioneer factors.
PMID:37935256 | DOI:10.1016/j.jmb.2023.168355
Genome-wide identification of overexpression and downregulation gene targets based on the sum of covariances of the outgoing reaction fluxes
Cell Syst. 2023 Oct 29:S2405-4712(23)00297-1. doi: 10.1016/j.cels.2023.10.005. Online ahead of print.
ABSTRACT
In metabolic engineering, predicting gene overexpression targets remains challenging because both endogenous and heterologous genes in a large metabolic space can be candidates, in contrast to gene knockout targets that are confined to endogenous genes. We report the development of iBridge that identifies positive and negative metabolites exerting positive and negative impacts on product formation, respectively, based on the sum of covariances of their outgoing (consuming) reaction fluxes for a target chemical. Then, "bridge" reactions converting negative metabolites to positive metabolites are identified as overexpression targets, while the opposites as downregulation targets. Using iBridge, overexpression and downregulation targets are suggested for the production of 298 chemicals and validated for 36 chemicals experimentally demonstrated in previous studies. Finally, iBridge is employed to engineer Escherichia coli strains capable of producing 10.3 g/L of D-panthenol, a compound not previously produced, as well as putrescine and 4-hydroxyphenyllactate at enhanced titers, 63.7 and 8.3 g/L, respectively.
PMID:37935194 | DOI:10.1016/j.cels.2023.10.005
Spatial Variation in the Inflammatory Response of House Sparrows in their Native Range
Ecohealth. 2023 Nov 7. doi: 10.1007/s10393-023-01652-9. Online ahead of print.
ABSTRACT
Characterizing spatial differences in wildlife immunity is the first step to identify environmental drivers of host defense and disease risks. The house sparrow (Passer domesticus) is a model system for ecoimmunology, but spatial differences in immunity have been largely restricted to the invasive range of this global species. We provide an initial test of spatial variation in immune response to phytohemagglutinin in the native range, finding that birds from Romania have greater inflammatory responses than birds from Egypt. Future broad surveys across the house sparrow native range could contextualize these differences and determine underlying drivers.
PMID:37936004 | DOI:10.1007/s10393-023-01652-9
Transcriptional reprogramming by mutated IRF4 in lymphoma
Nat Commun. 2023 Nov 7;14(1):6947. doi: 10.1038/s41467-023-41954-8.
ABSTRACT
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
PMID:37935654 | DOI:10.1038/s41467-023-41954-8
PTIR1 acts as an isoform of DDX58 and promotes tumor immune resistance through activation of UCHL5
Cell Rep. 2023 Nov 6;42(11):113388. doi: 10.1016/j.celrep.2023.113388. Online ahead of print.
ABSTRACT
Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer. Through blocking the recruitment of leukocytes, PTIR1 facilitates cancer immune escape and tumor-intrinsic resistance to immunotherapeutic treatments. Unlike RIG-I, PTIR1 is capable of binding to the C terminus of UCHL5 and activates its ubiquitinating function, which in turn inhibits immunoproteasome activity and limits neoantigen processing and presentation, consequently blocking T cell recognition and attack against cancer. Moreover, we find that the adenosine deaminase ADAR1 induces A-to-I RNA editing on DDX58 transcript, thus triggering PTIR1 production. Collectively, our data uncover the immunosuppressive role of PTIR1 in tumorigenesis and propose that ADAR1-PTIR1-UCHL5 signaling is a potential cancer immunotherapeutic target.
PMID:37934668 | DOI:10.1016/j.celrep.2023.113388
Physiological and genomic characterization of Lactiplantibacillus plantarum isolated from Indri indri in Madagascar
J Appl Microbiol. 2023 Nov 2:lxad255. doi: 10.1093/jambio/lxad255. Online ahead of print.
ABSTRACT
AIMS: Indri indri is a lemur of Madagascar which is Critically Endangered. The analysis of the microbial ecology of the intestine offers tools to improve conservation efforts. This study aimed to achieve a functional genomic analysis of three Lp. plantarum isolates from indris.
METHODS AND RESULTS: Samples were obtained from 18 indri; 3 isolates of Lp. plantarum were obtained from 2 individuals. The three isolates were closely related to each other, with fewer than 10 single nucleotide polymorphisms, suggesting that the two individuals shared diet-associated microbes. The genomes of the three isolates were compared to 96 reference strains of Lp. plantarum. The three isolates of Lp. plantarum were not phenotypically resistant to antibiotics but shared all 17 genes related to antimicrobial resistance that are part of the core genome of Lp. plantarum. Genomes of the three indri isolates of Lp. plantarum also encoded for the 6 core genome genes coding for enzymes related to metabolism of hydroxybenzoic and hydroxycinnamic acids. The phenotype for metabolism of hydroxycinnamic acids by indri isolates of Lp. plantarum matched the genotype.
CONCLUSIONS: Multiple antimicrobial resistance genes and gene coding for metabolism of phenolic compounds were identified in the genomes of the indri isolates, suggesting that Lp. plantarum maintains antimicrobial resistance in defense of antimicrobial plant secondary pathogens and that their metabolism by intestinal bacteria aids digestion of plant material by primate hosts.
PMID:37934609 | DOI:10.1093/jambio/lxad255
Development of a rapid, sensitive detection method for SARS-CoV-2 and influenza virus based on recombinase polymerase amplification combined with CRISPR-Cas12a assay
J Med Virol. 2023 Nov;95(11):e29215. doi: 10.1002/jmv.29215.
ABSTRACT
Respiratory tract infections are associated with the most common diseases transmitted among people and remain a huge threat to global public health. Rapid and sensitive diagnosis of causative agents is critical for timely treatment and disease control. Here, we developed a novel method based on recombinase polymerase amplification (RPA) combined with CRISPR-Cas12a to detect three viral pathogens, including SARS-CoV-2, influenza A, and influenza B, which cause similar symptom complexes of flu cold in the respiratory tract. The detection method can be completed within 1 h, which is faster than other standard detection methods, and the limit of detection is approximately 102 copies/μL. Additionally, this detection system is highly specific and there is no cross-reactivity with other common respiratory tract pathogens. Based on this assay, we further developed a more simplified RPA/CRISPR-Cas12a system combined with lateral flow assay on a manual microfluidic chip, which can simultaneously detect these three viruses. This low-cost detection system is rapid and sensitive, which could be applied in the field and resource-limited areas without bulky and expensive instruments, providing powerful tools for the point-of-care diagnostic.
PMID:37933907 | DOI:10.1002/jmv.29215
Spotlight on overlooked lignin monomers: hydroxycinnamaldehydes
Plant Physiol. 2023 Nov 2:kiad589. doi: 10.1093/plphys/kiad589. Online ahead of print.
NO ABSTRACT
PMID:37933704 | DOI:10.1093/plphys/kiad589
100 years of anthropogenic impact causes changes in freshwater functional biodiversity
Elife. 2023 Nov 7;12:RP86576. doi: 10.7554/eLife.86576.
ABSTRACT
Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate. Unless we find transformative solutions to preserve biodiversity, future generations may not be able to enjoy nature's services. We have developed a conceptual framework that establishes the links between biodiversity dynamics and abiotic change through time and space using artificial intelligence. Here, we apply this framework to a freshwater ecosystem with a known history of human impact and study 100 years of community-level biodiversity, climate change and chemical pollution trends. We apply explainable network models with multimodal learning to community-level functional biodiversity measured with multilocus metabarcoding, to establish correlations with biocides and climate change records. We observed that the freshwater community assemblage and functionality changed over time without returning to its original state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined with extreme temperature events and precipitation, explained up to 90% of the functional biodiversity changes. The community-level biodiversity approach used here reliably explained freshwater ecosystem shifts. These shifts were not observed when using traditional quality indices (e.g. Trophic Diatom Index). Our study advocates the use of high-throughput systemic approaches on long-term trends over species-focused ecological surveys to identify the environmental factors that cause loss of biodiversity and disrupt ecosystem functions.
PMID:37933221 | DOI:10.7554/eLife.86576
MGI short-read genome assemblies of Pythium insidiosum (reclassified as Pythium periculosum) strains Pi057C3 and Pi050C3
BMC Res Notes. 2023 Nov 6;16(1):316. doi: 10.1186/s13104-023-06587-6.
ABSTRACT
OBJECTIVES: Pythium insidiosum causes a difficult-to-treat infectious condition called pythiosis, with high morbidity and mortality. So far, genome data of at least 10 strains of P. insidiosum, primarily classified in the phylogenetic clades I and II, have been sequenced using various next-generation sequencing platforms. The MGI short-read platform was employed to obtain genome data of 2 clade-III strains of P. insidiosum (recently reclassified as Pythium periculosum) from patients in Thailand and the United States. This work is a part of our attempt to generate a comprehensive genome database from diverse pathogen strains.
DATA DESCRIPTION: A 150-bp paired-end library was prepared from a gDNA sample of P. insidiosum (P. periculosum) strains Pi057C3 and Pi050C3 (also known as ATCC90586) to generate draft genome sequences using an MGISEQ-2000RS sequencer. As a result, for the strain Pi057C3, we obtained a 42.5-Mb assembled genome (164x coverage) comprising 14,134 contigs, L50 of 241, N50 of 45,748, 57.6% CG content, and 12,147 ORFs. For the strain Pi050C3, we received a 43.3-Mb draft genome (230x coverage) containing 14,511 contigs, L50 of 245, N50 of 45,208, 57.7% CG content, and 12,249 ORFs. The genome sequences have been deposited in the NCBI/DDBJ databases under the accession numbers JAKCXM000000000.1 (strain Pi057C3) and JAKCXL000000000.1 (strain Pi050C3).
PMID:37932861 | DOI:10.1186/s13104-023-06587-6
Genomic characterization of IDH-mutant astrocytoma progression to grade 4 in the treatment setting
Acta Neuropathol Commun. 2023 Nov 6;11(1):176. doi: 10.1186/s40478-023-01669-9.
ABSTRACT
As the progression of low-grade diffuse astrocytomas into grade 4 tumors significantly impacts patient prognosis, a better understanding of this process is of paramount importance for improved patient care. In this project, we analyzed matched IDH-mutant astrocytomas before and after progression to grade 4 from six patients (discovery cohort) with genome-wide sequencing, 21 additional patients with targeted sequencing, and 33 patients from Glioma Longitudinal AnalySiS cohort for validation. The Cancer Genome Atlas data from 595 diffuse gliomas provided supportive information. All patients in our discovery cohort received radiation, all but one underwent chemotherapy, and no patient received temozolomide (TMZ) before progression to grade 4 disease. One case in the discovery cohort exhibited a hypermutation signature associated with the inactivation of the MSH2 and DNMT3A genes. In other patients, the number of chromosomal rearrangements and deletions increased in grade 4 tumors. The cell cycle checkpoint gene CDKN2A, or less frequently RB1, was most commonly inactivated after receiving both chemo- and radiotherapy when compared to other treatment groups. Concomitant activating PDGFRA/MET alterations were detected in tumors that acquired a homozygous CDKN2A deletion. NRG3 gene was significantly downregulated and recurrently altered in progressed tumors. Its decreased expression was associated with poorer overall survival in both univariate and multivariate analysis. We also detected progression-related alterations in RAD51B and other DNA repair pathway genes associated with the promotion of error-prone DNA repair, potentially facilitating tumor progression. In our retrospective analysis of patient treatment and survival timelines (n = 75), the combination of postoperative radiation and chemotherapy (mainly TMZ) outperformed radiation, especially in the grade 3 tumor cohort, in which it was typically given after primary surgery. Our results provide further insight into the contribution of treatment and genetic alterations in cell cycle, growth factor signaling, and DNA repair-related genes to tumor evolution and progression.
PMID:37932833 | DOI:10.1186/s40478-023-01669-9
Identification of quantitative trait loci and associated candidate genes for pregnancy success in Angus-Brahman crossbred heifers
J Anim Sci Biotechnol. 2023 Nov 7;14(1):137. doi: 10.1186/s40104-023-00940-2.
ABSTRACT
BACKGROUND: In beef cattle, more than 50% of the energy input to produce a unit of beef is consumed by the female that produced the calf. Development of genomic tools to identify females with high genetic merit for reproductive function could increase the profitability and sustainability of beef production.
RESULTS: Genome-wide association studies (GWAS) were performed using a single-step genomic best linear unbiased prediction approach on pregnancy outcome traits from a population of Angus-Brahman crossbred heifers. Furthermore, a validation GWAS was performed using data from another farm. Heifers were genotyped with the Bovine GGP F250 array that contains 221,077 SNPs. In the discovery population, heifers were bred in winter breeding seasons involving a single round of timed artificial insemination (AI) followed by natural mating for 3 months. Two phenotypes were analyzed: pregnancy outcome to first-service AI (PAI; n = 1,481) and pregnancy status at the end of the breeding season (PEBS; n = 1,725). The heritability was estimated as 0.149 and 0.122 for PAI and PEBS, respectively. In the PAI model, one quantitative trait locus (QTL), located between 52.3 and 52.5 Mb on BTA7, explained about 3% of the genetic variation, in a region containing a cluster of γ-protocadherin genes and SLC25A2. Other QTLs explaining between 0.5% and 1% of the genetic variation were found on BTA12 and 25. In the PEBS model, a large QTL on BTA7 was synonymous with the QTL for PAI, with minor QTLs located on BTA5, 9, 10, 11, 19, and 20. The validation population for pregnancy status at the end of the breeding season were Angus-Brahman crossbred heifers bred by natural mating. In concordance with the discovery population, the large QTL on BTA7 and QTLs on BTA10 and 12 were identified.
CONCLUSIONS: In summary, QTLs and candidate SNPs identified were associated with pregnancy outcomes in beef heifers, including a large QTL associated with a group of protocadherin genes. Confirmation of these associations with larger populations could lead to the development of genomic predictions of reproductive function in beef cattle. Moreover, additional research is warranted to study the function of candidate genes associated with QTLs.
PMID:37932831 | DOI:10.1186/s40104-023-00940-2
Quantification of evolved DNA-editing enzymes at scale with DEQSeq
Genome Biol. 2023 Nov 6;24(1):254. doi: 10.1186/s13059-023-03097-3.
ABSTRACT
We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications. Our results demonstrate that DEQSeq is a powerful tool for accelerating enzyme discovery and advancing genome editing research.
PMID:37932818 | DOI:10.1186/s13059-023-03097-3
Harnessing CD3 diversity to optimize CAR T cells
Nat Immunol. 2023 Nov 6. doi: 10.1038/s41590-023-01658-z. Online ahead of print.
ABSTRACT
Current US Food and Drug Administration-approved chimeric antigen receptor (CAR) T cells harbor the T cell receptor (TCR)-derived ζ chain as an intracellular activation domain in addition to costimulatory domains. The functionality in a CAR format of the other chains of the TCR complex, namely CD3δ, CD3ε and CD3γ, instead of ζ, remains unknown. In the present study, we have systematically engineered new CD3 CARs, each containing only one of the CD3 intracellular domains. We found that CARs containing CD3δ, CD3ε or CD3γ cytoplasmic tails outperformed the conventional ζ CAR T cells in vivo. Transcriptomic and proteomic analysis revealed differences in activation potential, metabolism and stimulation-induced T cell dysfunctionality that mechanistically explain the enhanced anti-tumor performance. Furthermore, dimerization of the CARs improved their overall functionality. Using these CARs as minimalistic and synthetic surrogate TCRs, we have identified the phosphatase SHP-1 as a new interaction partner of CD3δ that binds the CD3δ-ITAM on phosphorylation of its C-terminal tyrosine. SHP-1 attenuates and restrains activation signals and might thus prevent exhaustion and dysfunction. These new insights into T cell activation could promote the rational redesign of synthetic antigen receptors to improve cancer immunotherapy.
PMID:37932456 | DOI:10.1038/s41590-023-01658-z
Chromosome-level genomes of three key Allium crops and their trait evolution
Nat Genet. 2023 Nov 6. doi: 10.1038/s41588-023-01546-0. Online ahead of print.
ABSTRACT
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
PMID:37932434 | DOI:10.1038/s41588-023-01546-0
The DNA-binding induced (de)AMPylation activity of a Coxiella burnetii Fic enzyme targets Histone H3
Commun Biol. 2023 Nov 6;6(1):1124. doi: 10.1038/s42003-023-05494-7.
ABSTRACT
The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.
PMID:37932372 | DOI:10.1038/s42003-023-05494-7
The Banff 2022 Kidney Meeting Work Plan: Data-driven Refinement of the Banff Classification for Renal Allografts
Am J Transplant. 2023 Nov 4:S1600-6135(23)00855-9. doi: 10.1016/j.ajt.2023.10.031. Online ahead of print.
ABSTRACT
The XVI-th Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from 19th-23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the Classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasised. This paper summarises the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper, and also provides an update on other Banff Working Group activities relevant to kidney allografts.
PMID:37931753 | DOI:10.1016/j.ajt.2023.10.031
Topology regulatory elements: From shaping genome architecture to gene regulation
Curr Opin Struct Biol. 2023 Nov 4;83:102723. doi: 10.1016/j.sbi.2023.102723. Online ahead of print.
ABSTRACT
The importance of 3D genome topology in the control of gene expression is becoming increasingly apparent, while regulatory mechanisms remain incompletely understood. Several recent studies have identified architectural elements that influence developmental gene expression by shaping locus topology. We refer to these elements as topological regulatory elements (TopoREs) to reflect their dual roles in genome organisation and gene expression. Importantly, these elements do not harbour autonomous transcriptional activation capacity, and instead appear to facilitate enhancer-promoter interactions, contributing to robust and precise timing of transcription. We discuss examples of TopoREs from two classes that are either dependent or independent of CTCF binding. Importantly, identification and interpretation of TopoRE function may shed light on multiple aspects of gene regulation, including the relationship between enhancer-promoter proximity and transcription, and enhancer-promoter specificity. Ultimately, understanding TopoRE diversity and function will aid in the interpretation of how human sequence variation can impact transcription and contribute to disease phenotypes.
PMID:37931379 | DOI:10.1016/j.sbi.2023.102723
Detection and quantification of TIMP1 and miR-141 through RT-LAMP and TT-LAMP in serum samples during estrous cycle in buffalo
Reprod Biol. 2023 Nov 4;23(4):100820. doi: 10.1016/j.repbio.2023.100820. Online ahead of print.
ABSTRACT
Estrus identification is a common problem in the reproductive management of farm animals. Hence, several studies have been conducted to explore biomarkers for estrus detection. One of our previous studies identified the abundance of RNA biomarkers such as TIMP1 and miR-141 in buffalo saliva during the estrus stage. However, the level of these RNA biomarkers in buffalo serum during estrous cycle is undetected. Therefore, the present study was designed to quantify TIMP1 and miR-141 in serum during buffalo estrous cycle. Blood samples were collected in different stages of estrous cycle from four healthy cyclic buffaloes. The quantification of TIMP1 and miR-141 was performed with direct serum using RT-LAMP and TT-LAMP technologies, respectively. The LAMP amplification was confirmed by agarose gel electrophoresis and the color change was quantified in comparison to a non-template control using ImageJ software. A decreased abundance of TIMP1 at the diestrus stage and a decreasing trend of miR-141 from proestrus to diestrus stages were observed, which was further reinforced by simulated random populations generated with R programming. Specifically, TIMP1 was found significantly (P < 0.0001) abundant at estrus and metestrus stages as compared to the diestrus stage, whereas miR-141 was significantly (P < 0.001) higher during the proestrus stage as compared to the other stages of estrous cycle. The ROC curve analysis showed miR-141 to be a better biomarker than TIMP1 as it distinguished the proestrus stage from diestrus with a sensitivity and specificity of 83 % and 98 %. This study also marked the first use of TT-LAMP technology for rapid miRNA detection in livestock.
PMID:37931338 | DOI:10.1016/j.repbio.2023.100820